An attempt at defining Watanabe's propagators for $(S^1)^4$

Mateusz Kujawski

Glasgow, 02.09.2025

Slogan. Watanabe constructed an *exotic* disk bundle over S^2 .

Exotic means topologically trivial, but not smoothly.

Topic (for the next 9 minutes). How do we know this bundle is nontrivial?

Usually, in mathematics we work with representable functors, such as π_* or H^* . Let us consider

$$\begin{split} C_n(X) &\coloneqq \left[\{1, \dots, n\}, X \right] |_{\text{embeddings}} \\ &= \left\{ (x_1, \dots, x_n) \in X^n \mid x_i = x_j \iff i = j \right\} \\ &= X^n \smallsetminus \underbrace{\text{diagonals}}_{\text{collisions}} \end{split}$$

The $\mid_{\text{embeddings}}$ is not elegant so we introduce $\overline{C}_n(X)$. We allow collisions, but we remember direction – we replace diagonals with thier normal sphere bundles.

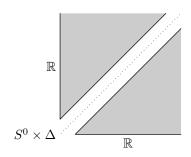


Figure 1: $\overline{C}_2(\mathbb{R})$

Example. Point 2 hits point 1. In $\overline{C}_2(X)$ point 2 is the direction of collision. Directions form the tangent space, hence $2 \in TX$. In other words we replaced the diagonal with its normal sphere bundle, which is isomorphic to TX by $(-v, v) \longmapsto (v, v)$.

Corollary. $C_n(-)$ can see the tangent bundle \implies it is good to distinguish topological and smooth.

We have the *the configuration space*, now we can come back to the usual tools and compute its cohomology. A very *effective* way to do that is to consider the two-point collisions.

Technical detail. Configurations in a disk are the same as configurations in the sphere with ∞ forbidden. We thus write $\overline{C}_n(S^4;\infty)$.

We pull the volume form along

$$\overline{C}_n(S^4; \infty) \xrightarrow{\text{forgetful } \psi_i} \overline{C}_2(S^4; \infty) \xrightarrow[\frac{x-y}{\|x-y\|]} S^3$$

Graph input. We do not need to consider collisions of all pairs. Connect the points to be collided by edges.

A configuration of points gives rise to a unique graph embedding because of codimension 3. Now for a graph Γ with n vertices we have a form:

$$\bigwedge_{i: \text{ edges}} \underbrace{\psi_i^* \varphi_i^* \text{vol}}_{\text{propagator}} \in H^3 \overline{C}_n(S^4, \infty)$$

What graph to choose? There is a theory for that called *graph cohomology*. But I promised you bundles. We can do this in a bundle:

$$D^4 \longrightarrow E \xrightarrow{\pi} B \quad \leadsto \quad \overline{C}_n(S^4; \infty) \longrightarrow E\overline{C}_n(\pi) \longrightarrow B$$

Problem. φ depends on the coordinates.

Observe that we only care what happens on the boundary. We can require our bundle π to have a trivial subbundle

$$S^3 \longrightarrow \partial E \longrightarrow B$$

Moreover TD^4 is trivial, so we can pick a trivialisation of TD^4 over the whole trivial subbundle ∂E . We have a uniform way of defining the angle φ now. We pull by

$$\partial E\overline{C}_2(S^4;\infty) \longrightarrow S^3$$

and extend the form.

Goal. Can we do that for other manifolds? Let us start with $(S^1)^4$

Problem 1. Coordinates: already solved, $(S^1)^4$ is parallelizable.

Problem 2. Graph input: embedding is no longer unique. We need to label graph edges with elements of π_1 . This is actually good, because we have more graphs – more forms.

Problem 3. Effectiveness: can we get any nontrivial classes that way? There is a chance.

We compute $H^3C_2(S^4; \infty)$ with the Mayer-Vietoris sequence.

$$(S^{\hat{1}})^4 \times (S^{\hat{1}})^4 = \nu \Delta \cup C_2((S^{\hat{1}})^4)$$

= $\nu \Delta \cap C_2(S^{\hat{1}})^4 = \Delta \times S^3$

$$H^{4}(\Delta \times S^{3}) \longrightarrow H^{3}((S^{1})^{4} \times (S^{1})^{4}) \longrightarrow H^{3}(\nu \Delta) \oplus H^{3}C_{2}((S^{1})^{4})$$

$$\longrightarrow \mathbb{Z}^{4} \longrightarrow \mathbb{Z}^{16} \longrightarrow 0 \oplus \underbrace{H^{3}C_{2}((S^{1})^{4})}_{\geqslant \mathbb{Z}^{12}}$$

Extras (not inleuded in the talk). Cohomology computations.

$$H^*((S^{\mathring{1}})^4) \simeq H^*((S^1 \times S^1) \vee (S^1 \times S^1)) \simeq \mathbb{Z}, \, \mathbb{Z}^4, \, \mathbb{Z}^2, \, 0, \, \dots$$

$$H^3((S^{\mathring{1}})^4 \times (S^{\mathring{1}})^4) \simeq (\mathbb{Z}^4 \otimes \mathbb{Z}^2) \oplus (\mathbb{Z}^2 \otimes \mathbb{Z}^4) \simeq \mathbb{Z}^{16}$$

$$H^3(\nu\Delta) \simeq H^3(\Delta) \simeq 0$$

$$H^4(\Delta \times S^3) \simeq \mathbb{Z}^4 \otimes \mathbb{Z} \simeq \mathbb{Z}^4$$