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Slogan. Watanabe constructed an ezotic disk bundle over S2.
Exotic means topologically trivial, but not smoothly.
Topic (for the next 9 minutes). How do we know this bundle is nontrivial?

Usually, in mathematics we work with representable functors, such as m, or H*. Let us consider

Cn(X) = [{17 s 7”}7X} |cmbcddings
= X" \ diagonals
—

collisions

The |embeddings i not elegant so we introduce C,,(X). We allow collisions, but we remember direc-
tion - we replace diagonals with thier normal sphere bundles.

Example. Point 2 hits point 1. In Cq(X)
point 2 is the direction of collision. Directions
} form the tangent space, hence 2 € TX. In
R other words we replaced the diagonal with its
} normal sphere bundle, which is isomorphic to
TX by (—v,v) — (v,v).

Corollary. C,,(—) can see the tangent bundle

SO A R = it is good to distinguish topological and
smooth.
Figure 1: Cy(R) We have the the configuration space, now we

can come back to the usual tools and compute
its cohomology. A very effective way to do that
is to consider the two-point collisions.

Technical detail. Configurations in a disk are
the same as configurations in the sphere with oo forbidden. We thus write C,,(S%; o0).

We pull the volume form along
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Graph input. We do not need to consider collisions of all pairs. Connect the points to be collided

by edges.



A configuration of points gives rise to a unique graph embedding because of codimension 3.
Now for a graph I' with n vertices we have a form:

/\  ¥reivol € HC, (S, 00)

i: edges propagator

What graph to choose? There is a theory for that called graph cohomology.
But I promised you bundles. We can do this in a bundle:

D* —-ESB ~ (.8 0)— EC,(r) — B
Problem. ¢ depends on the coordinates.

Observe that we only care what happens on the boundary. We can require our bundle 7 to
have a trivial subbundle
S — OE — B

Moreover T'D* is trivial, so we can pick a trivialisation of TD* over the whole trivial subbundle
OF. We have a uniform way of defining the angle ¢ now. We pull by

OEC5(S*; 00) — S3
and extend the form.

Goal. Can we do that for other manifolds? Let us start with (S1)*

Problem 1. Coordinates: already solved, ESl)4 is parallelizable.

Problem 2. Graph input: embedding is no longer unique. We need to label graph edges with
elements of 7. This is actually good, because we have more graphs — more forms.

Problem 3. Effectiveness: can we get any nontrivial classes that way? There is a chance.

We compute H3Cy(S%; 00) with the Mayer—Vietoris sequence.

(S1)4 x (S1)% = VA U Cy((S1)4)
= VANCy(S1)d = A x S

HY(A x §3) — H3((S1)* x (S1)4) — H3(vA) & H3Cy((S1)4)
I T 0@ H3CH((S1)Y)
>Z12

Extras (not inlcuded in the talk). Cohomology computations.
H*((S1)4) ~ H*((S" x SY) v (S* x SY)) ~Z, Z*, 72, 0, ...

H3((S1)1 x (S1)) ~ (2' © 22) & (2° ® Z*) ~ 7'
H3(vA) ~ H3(A) ~ 0
HY A xS ~7*®7~7*



