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Context

▶ In 2018 Tadayuki Watanabe constructed an exotic D4-bundle over S2.

▶ Exotic means topologically trivial but not smoothly.

▶ This bundle corresponds to a nontrivial element of π1 Diff(D4, ∂).



Context

▶ In 2018 Tadayuki Watanabe constructed an exotic D4-bundle over S2.

▶ Exotic means topologically trivial but not smoothly.

▶ This bundle corresponds to a nontrivial element of π1 Diff(D4, ∂).



Context

▶ In 2018 Tadayuki Watanabe constructed an exotic D4-bundle over S2.

▶ Exotic means topologically trivial but not smoothly.

▶ This bundle corresponds to a nontrivial element of π1 Diff(D4, ∂).



Topic for the next 9 minutes

How did Watanabe prove the nontriviality of his bundle?



Configuration spaces

Usually, in mathematics we work with representable functors, such as π∗ or
H∗. This time, let us consider

Cn(X) := [{1, . . . , n}, X] |embeddings

= {(x1, . . . , xn) ∈ Xn | xi = xj ⇐⇒ i = j}
=Xn ∖ diagonals︸ ︷︷ ︸

collisions

as an alternative and come back to cohomology later.
The |embeddings is not elegant so we introduce compactifications.
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Compactification of a configuration space

We allow collisions, but we remember direction – we replace diagonals with
their normal sphere bundles.

Result: Cn(X), which is homotopy equivalent to Cn(X).

▶ Point y hits point x.

▶ In C2(X) point y is the direction
of collision.

▶ Directions form the tangent
space, hence y ∈ TX.

▶ diagonal ⇝ its normal sphere
bundle, which is isomorphic to
TX by (−v, v) 7−! (v, v).
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Corollary

Cn(−) can see the tangent bundle.

=⇒

It is good to distinguish topological and smooth.



Cohomology of Cn(R4)

A very effective way to do that is to consider the two-point collisions.
We pull the volume form along

Cn(R4)
forgetful ψi−−−−−−−! C2(R4)

angle φ
−−−−−!

x−y
||x−y||

S3

Integrating forms of this type give Watanabe’s invariant.



Graph input

Cn(R4)
forgetful ψi−−−−−−−! C2(R4)

angle φ
−−−−−!

x−y
||x−y||

S3

We do not need to consider all pairs. Connect the points to be collided by
edges. Irrelevant how exactly.
Each graph with n vertices induce a form:∧

i : edges

ψ∗
i φ

∗vol︸ ︷︷ ︸
propagator

∈ H3iCn(R4)

What graph to choose? There is a theory for that, see Kontsevich graph
cohomology.



Back to bundles

We can do this in a bundle:

D4 −! E
π
−! B ⇝ Cn(R4) −! ECn(π) −! B

And integrate it form to get the invariant.

Problem

φ(x, y) =
x− y

||x− y||
depends on the coordinates.
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Solution to the problem

Important things happen in the boundary. We can require our bundle π to
have a trivial subbundle

S3 −! ∂E −! B

▶ TD4 is trivial.

▶ Pick a trivialisation of TD4 over the whole trivial subbundle ∂E.

▶ We have a uniform way of defining the angle φ.

▶ We pull by
∂EC2(R4) −! S3

and extend the form.

Remark
That is why Watanabe’s bundle corresponds to something in Diff(D4, ∂).



Solution to the problem

Important things happen in the boundary. We can require our bundle π to
have a trivial subbundle

S3 −! ∂E −! B

▶ TD4 is trivial.

▶ Pick a trivialisation of TD4 over the whole trivial subbundle ∂E.

▶ We have a uniform way of defining the angle φ.

▶ We pull by
∂EC2(R4) −! S3

and extend the form.

Remark
That is why Watanabe’s bundle corresponds to something in Diff(D4, ∂).



Solution to the problem

Important things happen in the boundary. We can require our bundle π to
have a trivial subbundle

S3 −! ∂E −! B

▶ TD4 is trivial.

▶ Pick a trivialisation of TD4 over the whole trivial subbundle ∂E.

▶ We have a uniform way of defining the angle φ.

▶ We pull by
∂EC2(R4) −! S3

and extend the form.

Remark
That is why Watanabe’s bundle corresponds to something in Diff(D4, ∂).



Solution to the problem

Important things happen in the boundary. We can require our bundle π to
have a trivial subbundle

S3 −! ∂E −! B

▶ TD4 is trivial.

▶ Pick a trivialisation of TD4 over the whole trivial subbundle ∂E.

▶ We have a uniform way of defining the angle φ.

▶ We pull by
∂EC2(R4) −! S3

and extend the form.

Remark
That is why Watanabe’s bundle corresponds to something in Diff(D4, ∂).



Solution to the problem

Important things happen in the boundary. We can require our bundle π to
have a trivial subbundle

S3 −! ∂E −! B

▶ TD4 is trivial.

▶ Pick a trivialisation of TD4 over the whole trivial subbundle ∂E.

▶ We have a uniform way of defining the angle φ.

▶ We pull by
∂EC2(R4) −! S3

and extend the form.

Remark
That is why Watanabe’s bundle corresponds to something in Diff(D4, ∂).



What about (S1)4 and other manifolds? Work in progress

Problem (Coordinates)

Already solved, ˚(S1)4 is parallelizable.

Problem (Graph input)

Embedding is no longer unique. We need to label graph edges with elements
of π1. This is actually good, because we have more graphs ⇝ more forms.

Problem (Efectiveness)

Can we get any nontrivial classes that way? There is a chance.
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Room for propagators for (S1)4

Compute H3C2( ˚(S1)4) with the Mayer–Vietoris sequence.

ν∆

˚(S1)4

˚(S1)4 ˚(S1)4 × ˚(S1)4 = ν∆ ∪ C2( ˚(S1)4)

= ν∆ ∩ C2
˚(S1)4 = ∆× S3

H4(∆× S3) −! H3( ˚(S1)4 × ˚(S1)4) −! H3(ν∆)⊕H3C2( ˚(S1)4)

⇝ Z4 −! Z16 −! 0⊕H3C2( ˚(S1)4)︸ ︷︷ ︸
⩾Z12
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Thank you for your time


