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» In 2018 Tadayuki Watanabe constructed an ezotic D*-bundle over S2.
» Exotic means topologically trivial but not smoothly.

» This bundle corresponds to a nontrivial element of 7 Diff(D*, 9).



TOPIC FOR THE NEXT 9 MINUTES

How did Watanabe prove the nontriviality of his bundle?



CONFIGURATION SPACES

Usually, in mathematics we work with representable functors, such as 7. or
H*. This time, let us consider



CONFIGURATION SPACES

Usually, in mathematics we work with representable functors, such as 7. or
H*. This time, let us consider

C"(X) = [{17 e 7n}7 X] |embeddings



CONFIGURATION SPACES

Usually, in mathematics we work with representable functors, such as 7. or
H*. This time, let us consider

C"(X) = [{17 e 7n}7 X] |embeddings
:{(‘T17~“7xn)eXn|$i:£Ej < 7,:]}



CONFIGURATION SPACES

Usually, in mathematics we work with representable functors, such as 7. or
H*. This time, let us consider
C"(X) = [{17 e 7n}7 X] |embeddings
={(z1,...,20) € X" |zi =2, < =]}
= X" \ diagonals
——

collisions



CONFIGURATION SPACES

Usually, in mathematics we work with representable functors, such as 7. or
H*. This time, let us consider

C"(X) = [{L e 7n}7 X] |embeddings

={(z1,..,2n) EX" |zi =2; & i=j}
= X" \ diagonals

——

collisions

as an alternative and come back to cohomology later.



CONFIGURATION SPACES

Usually, in mathematics we work with representable functors, such as 7. or
H*. This time, let us consider

C"(X) = [{L e 7n}7 X] |embeddings

={(z1,..,2n) EX" |zi =2; & i=j}
= X" \ diagonals

——

collisions

as an alternative and come back to cohomology later.
The |embeddings 1s not elegant so we introduce compactifications.
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COMPACTIFICATION OF A CONFIGURATION SPACE

We allow collisions, but we remember direction — we replace diagonals with

their normal sphere bundles.

Result: C,(X), which is homotopy equivalent to Cy (X).

(_U7 U)

Point y hits point x.

In C2(X) point y is the direction
of collision.

Directions form the tangent
space, hence y € T'X.

diagonal ~~ its normal sphere
bundle, which is isomorphic to
TX by (—v,v) — (v,v).



COROLLARY

C, (=) can see the tangent bundle.

I

It is good to distinguish topological and smooth.



COHOMOLOGY OF Cp,(R%)

A very effective way to do that is to consider the two-point collisions.
We pull the volume form along
forgetful v, 62(R4) angle ¢ 53

z—y
[Tz =yl

Cn(RY)

Integrating forms of this type give Watanabe’s invariant.



GRAPH INPUT

forgetful v,

Cn(R")

62 (R4) angle ¢ g3
Me=ull
We do not need to consider all pairs. Connect the points to be collided by
edges. Irrelevant how exactly.
Each graph with n vertices induce a form:

/\ wievol € H¥Cu(RY)
——

i: edges propagator

What graph to choose? There is a theory for that, see Kontsevich graph
cohomology.



BACK TO BUNDLES

We can do this in a bundle:

p* —ESLB ~ C,R'") — EC,(r) — B



BACK TO BUNDLES

We can do this in a bundle:
p* —ESLB ~ C,R'") — EC,(r) — B

And integrate it form to get the invariant.
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We can do this in a bundle:

D* —-ESB ~ C.(R") — EC,(7r) — B
And integrate it form to get the invariant.
Problem

Ty

depends on the coordinates.
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SOLUTION TO THE PROBLEM

Important things happen in the boundary. We can require our bundle 7 to
have a trivial subbundle
S* —0E — B

» TD* is trivial.
> Pick a trivialisation of TD* over the whole trivial subbundle dE.
» We have a uniform way of defining the angle .
» We pull by
OEC,(R*) — S°

and extend the form.

Remark
That is why Watanabe’s bundle corresponds to something in Diff(D4, 9).
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WHAT ABOUT (S1)* AND OTHER MANIFOLDS? WORK IN PROGRESS

Problem (Coordinates)
Already solved, (53)4 is parallelizable.

Problem (Graph input)
Embedding is no longer unique. We need to label graph edges with elements
of 1. This is actually good, because we have more graphs ~ more forms.

Problem (Efectiveness)

Can we get any nontrivial classes that way? There is a chance.



ROOM FOR PROPAGATORS FOR (S1)*

Compute H 302((5’01)4) with the Mayer—Vietoris sequence.
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ROOM FOR PROPAGATORS FOR (S1)*

Compute H3*C>((S i )4) with the Mayer—Vietoris sequence.

(S1y4

(S1)% x (S1)4 = vA U Ca((S1)4)
=vANCy (St =AxS®

HY(A x §%) — H*((S1)* x (S1)1) — H*(vA) & H*Ca((S1)4)

od

7' — 7' — 0@ H3Cy((S1)4)
~————
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THANK YOU FOR YOUR TIME



