Watanabe's propagators for $(S^1)^4$

MATEUSZ KUJAWSKI
HTTPS://STUDENTS.MIMUW.EDU.PL/~MK429651/

Mapping Class Groups of Non-Simply Connected 4-Manifolds, 02.09.2025

Context

▶ In 2018 Tadayuki Watanabe constructed an exotic D^4 -bundle over S^2 .

Context

- ▶ In 2018 Tadayuki Watanabe constructed an exotic D^4 -bundle over S^2 .
- ▶ Exotic means topologically trivial but not smoothly.

Context

- ▶ In 2018 Tadayuki Watanabe constructed an exotic D^4 -bundle over S^2 .
- ▶ Exotic means topologically trivial but not smoothly.
- ▶ This bundle corresponds to a nontrivial element of π_1 Diff (D^4, ∂) .

TOPIC FOR THE NEXT 9 MINUTES

How did Watanabe prove the nontriviality of his bundle?

$$C_n(X) := [\{1, \dots, n\}, X] |_{\text{embeddings}}$$

$$\begin{split} C_n(X) \coloneqq & \left[\{1, \dots, n\}, X \right] |_{\text{embeddings}} \\ & = \left\{ (x_1, \dots, x_n) \in X^n \mid x_i = x_j \iff i = j \right\} \end{split}$$

$$C_n(X) \coloneqq [\{1, \dots, n\}, X] \mid_{\text{embeddings}}$$

$$= \{(x_1, \dots, x_n) \in X^n \mid x_i = x_j \iff i = j\}$$

$$= X^n \setminus \underbrace{\text{diagonals}}_{\text{collisions}}$$

Configuration spaces

Usually, in mathematics we work with representable functors, such as π_* or H^* . This time, let us consider

$$C_n(X) \coloneqq [\{1, \dots, n\}, X] \mid_{\text{embeddings}}$$

$$= \{(x_1, \dots, x_n) \in X^n \mid x_i = x_j \iff i = j\}$$

$$= X^n \setminus \underbrace{\text{diagonals}}_{\text{collisions}}$$

as an alternative and come back to cohomology later.

Configuration spaces

Usually, in mathematics we work with representable functors, such as π_* or H^* . This time, let us consider

$$C_n(X) := [\{1, \dots, n\}, X] \mid_{\text{embeddings}}$$

$$= \{(x_1, \dots, x_n) \in X^n \mid x_i = x_j \iff i = j\}$$

$$= X^n \setminus \underbrace{\text{diagonals}}_{\text{collisions}}$$

as an alternative and come back to cohomology later.

The |_{embeddings} is not elegant so we introduce compactifications.

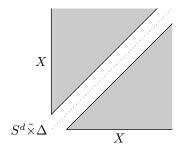
We allow collisions, but we remember direction – we replace diagonals with their normal sphere bundles.

Compactification of a configuration space

We allow collisions, but we remember direction – we replace diagonals with their normal sphere bundles.

Compactification of a configuration space

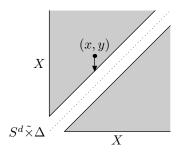
We allow collisions, but we remember direction – we replace diagonals with their normal sphere bundles.



Compactification of a configuration space

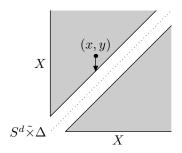
We allow collisions, but we remember direction – we replace diagonals with their normal sphere bundles.

Result: $\overline{C}_n(X)$, which is homotopy equivalent to $C_n(X)$.



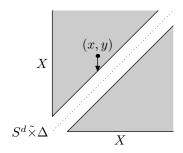
ightharpoonup Point y hits point x.

We allow collisions, but we remember direction – we replace diagonals with their normal sphere bundles.



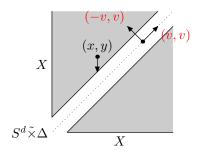
- ightharpoonup Point y hits point x.
- ▶ In $\overline{C}_2(X)$ point y is the direction of collision.

We allow collisions, but we remember direction – we replace diagonals with their normal sphere bundles.



- ightharpoonup Point y hits point x.
- ▶ In $\overline{C}_2(X)$ point y is the direction of collision.
- Directions form the tangent space, hence $y \in TX$.

We allow collisions, but we remember direction – we replace diagonals with their normal sphere bundles.



- ightharpoonup Point y hits point x.
- ▶ In $\overline{C}_2(X)$ point y is the direction of collision.
- ▶ Directions form the tangent space, hence $y \in TX$.
- ▶ diagonal \rightsquigarrow its normal sphere bundle, which is isomorphic to TX by $(-v, v) \longmapsto (v, v)$.

COROLLARY

 $\overline{C}_n(-)$ can see the tangent bundle.

It is good to distinguish topological and smooth.

Cohomology of $C_n(\mathbb{R}^4)$

A very effective way to do that is to consider the two-point collisions. We pull the volume form along

$$\overline{C}_n(\mathbb{R}^4) \xrightarrow{\text{forgetful } \psi_i} \overline{C}_2(\mathbb{R}^4) \xrightarrow{\text{angle } \varphi \atop \frac{x-y}{||x-y||}} S^3$$

Integrating forms of this type give Watanabe's invariant.

GRAPH INPUT

$$\overline{C}_n(\mathbb{R}^4) \xrightarrow{\text{forgetful } \psi_i} \overline{C}_2(\mathbb{R}^4) \xrightarrow[|x-y|]{x-y} S^3$$

We do not need to consider all pairs. Connect the points to be collided by edges. Irrelevant how exactly.

Each graph with n vertices induce a form:

$$\bigwedge_{i \colon \text{edges}} \underbrace{\psi_i^* \varphi^* \text{vol}}_{\text{propagator}} \in H^{3i} \overline{C}_n(\mathbb{R}^4)$$

What graph to choose? There is a theory for that, see *Kontsevich graph cohomology*.

BACK TO BUNDLES

We can do this in a bundle:

$$D^4 \longrightarrow E \xrightarrow{\pi} B \quad \leadsto \quad \overline{C}_n(\mathbb{R}^4) \longrightarrow E\overline{C}_n(\pi) \longrightarrow B$$

Back to bundles

We can do this in a bundle:

$$D^4 \longrightarrow E \xrightarrow{\pi} B \quad \leadsto \quad \overline{C}_n(\mathbb{R}^4) \longrightarrow E\overline{C}_n(\pi) \longrightarrow B$$

And integrate it form to get the invariant.

Back to bundles

We can do this in a bundle:

$$D^4 \longrightarrow E \xrightarrow{\pi} B \quad \leadsto \quad \overline{C}_n(\mathbb{R}^4) \longrightarrow E\overline{C}_n(\pi) \longrightarrow B$$

And integrate it form to get the invariant.

Problem

$$\varphi(x,y) = \frac{x-y}{||x-y||}$$

depends on the coordinates.

Important things happen in the boundary. We can require our bundle π to have a trivial subbundle

$$S^3 \longrightarrow \partial E \longrightarrow B$$

 $ightharpoonup TD^4$ is trivial.

Important things happen in the boundary. We can require our bundle π to have a trivial subbundle

$$S^3 \longrightarrow \partial E \longrightarrow B$$

- $ightharpoonup TD^4$ is trivial.
- ▶ Pick a trivialisation of TD^4 over the whole trivial subbundle ∂E .

Important things happen in the boundary. We can require our bundle π to have a trivial subbundle

$$S^3 \longrightarrow \partial E \longrightarrow B$$

- $ightharpoonup TD^4$ is trivial.
- ▶ Pick a trivialisation of TD^4 over the whole trivial subbundle ∂E .
- We have a uniform way of defining the angle φ .

Important things happen in the boundary. We can require our bundle π to have a trivial subbundle

$$S^3 \longrightarrow \partial E \longrightarrow B$$

- $ightharpoonup TD^4$ is trivial.
- ightharpoonup Pick a trivialisation of TD^4 over the whole trivial subbundle ∂E .
- We have a uniform way of defining the angle φ .
- ► We pull by

$$\partial E\overline{C}_2(\mathbb{R}^4) \longrightarrow S^3$$

and extend the form.

Important things happen in the boundary. We can require our bundle π to have a trivial subbundle

$$S^3 \longrightarrow \partial E \longrightarrow B$$

- $ightharpoonup TD^4$ is trivial.
- ightharpoonup Pick a trivialisation of TD^4 over the whole trivial subbundle ∂E .
- We have a uniform way of defining the angle φ .
- ► We pull by

$$\partial E\overline{C}_2(\mathbb{R}^4) \longrightarrow S^3$$

and extend the form.

Remark

That is why Watanabe's bundle corresponds to something in $Diff(D^4, \partial)$.

 ${\bf Problem} \,\, ({\bf Coordinates})$

Problem (Coordinates)

Already solved, $(\mathring{S^1})^4$ is parallelizable.

Problem (Coordinates)

Already solved, $(\mathring{S^1})^4$ is parallelizable.

Problem (Graph input)

Problem (Coordinates)

Already solved, $(S^{\hat{1}})^4$ is parallelizable.

Problem (Graph input)

Embedding is no longer unique. We need to label graph edges with elements of π_1 . This is actually good, because we have more graphs \rightsquigarrow more forms.

Problem (Coordinates)

Already solved, $(S^{\hat{1}})^4$ is parallelizable.

Problem (Graph input)

Embedding is no longer unique. We need to label graph edges with elements of π_1 . This is actually good, because we have more graphs \rightsquigarrow more forms.

Problem (Efectiveness)

Problem (Coordinates)

Already solved, $(S^{\hat{1}})^4$ is parallelizable.

Problem (Graph input)

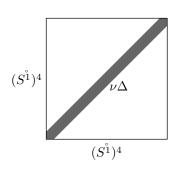
Embedding is no longer unique. We need to label graph edges with elements of π_1 . This is actually good, because we have more graphs \rightsquigarrow more forms.

Problem (Efectiveness)

Can we get any nontrivial classes that way? There is a chance.

Room for propagators for $(S^1)^4$

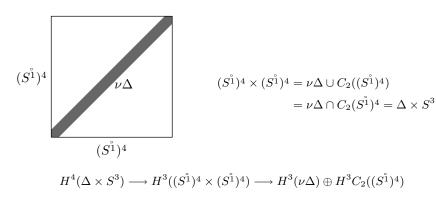
Compute $H^3C_2((\mathring{S^1})^4)$ with the Mayer–Vietoris sequence.



$$(\mathring{S}^{\mathring{1}})^{4} \times (\mathring{S}^{\mathring{1}})^{4} = \nu \Delta \cup C_{2}((\mathring{S}^{\mathring{1}})^{4})$$
$$= \nu \Delta \cap C_{2}(\mathring{S}^{\mathring{1}})^{4} = \Delta \times \mathring{S}^{3}$$

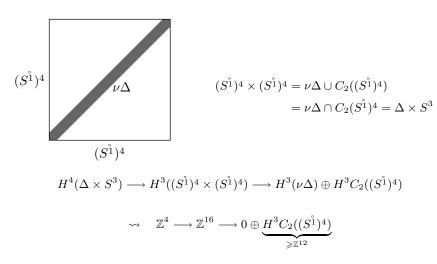
Room for propagators for $(S^1)^4$

Compute $H^3C_2((S^{\mathring{1}})^4)$ with the Mayer–Vietoris sequence.



Room for propagators for $(S^1)^4$

Compute $H^3C_2((\mathring{S^1})^4)$ with the Mayer–Vietoris sequence.



THANK YOU FOR YOUR TIME