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Abstract

This thesis is a part of a project suggested to the author by his advisor Maciej Borodzik.
The project is built on Tadayuki Watanabe’s theorem that disproves the long standing
Smale Conjecture in dimension four. Watanabe introduced innovative methods for
studying diffeomorphism groups, whose applications are believed not to be exhausted.

In this article we focus on Watanabe’s invariant Z2 of disk bundles over spheres.
We explain the construction in detail and include a proof that it is well-defined. We
provide intuition to make Watanabe’s work more accessible. We hope our efforts bring
the scientific community closer to understanding Watanabe’s ideas.

We have a greater project in mind: the generalization of Watanabe’s methods to
bundles of other manifolds. The main theorem cannot be directly applied in the more
general setting. However, in Section 7 we show that the proof itself is independent of
the fiber being a disk. In the Appendix we present some attempts at constructing the
notion of propagator for other manifolds and indicate directions of future research.

In Sections 1-8 we include explanations of Watanabe’s results. The contribution of
the author is rephrasing the results in a manner more accessible to general audience.
The results in the Appendices are original part of the research of the author.
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1. Introduction

In 1959 Steven Smale showed that the inclusion O(3) ↪−! Diff(S2) is a homotopy
equivalence, or in other words, that every diffeomorphism of a sphere is homotopic to a
composition of symmetries and rotations of R3, see [Sma59]. He later conjectured that
O(n + 1) ↪−! Diff(Sn) induces homotopy equivalence for arbitrary n > 0

[
♠
]
. In 1983

Allen Hatcher published a proof for n = 3, see [Hat83].
For all n ≥ 5 the Conjecture is known to be false. To formulate the results we need

some auxiliary theorems.

Theorem 1.1 ([ABK72], 1.1.5 Lemma).

Diff(Sn) ≃ Diff(Dn, ∂)×O(n+ 1)

where Diff(Dn, ∂) is the group of diffeomorphisms of Dn that are id on some open
neighborhood of the boundary.

Proof-sketch. Consider a small disk embedded in the sphere. Any diffeomorphism of
the sphere is then isotopic to one that has a ’global part’ – the rotation or symmetry
determined by the image of the disk, and a ’local part’ – what happened inside the
disk. ⊠

Corollary 1.2. Finding any nontrivial element of any homotopy group of Diff(Dn, ∂)
disproves the Smale Conjecture in dimension n.

Following, [KM63], let Θn+1 denote the group of diffeomorphism classes of homo-
topy (n+ 1)-spheres with connected sum as multiplication.

Theorem 1.3. For n ≥ 5 there exists a group isomorphism

π0Diff(Dn, ∂) ≃ Θn+1

Proof-sketch. Pick a diffeomorphism f : Sn −! Sn and glue two copies of Dn+1 with
f by their boundaries call the resulting manifold X. It is clear that isotopic diffeomor-
phisms yield the same manifold. The diffeomorphism f extends continuously to both
disks, but may not extend smoothly. Therefore we have obtained a potentially exotic
structure on Sn+1. We have constructed a homomorphism:

π0Diff(Sn) −! Θn+1

which has O(n+1) in its kernel, as id and − id extend to the whole Sn smoothly.Thus
we have

π0Diff(Dn, ∂) −! Θn+1

This map is bijective by Cerf’s pseudoisotopy theorem, see [Cer70, Corollarie 2.]. See
also [Mil56] for details of the construction. ⊠

As proven in [KM63], Θn+1 is non-trivial for many n:

n 5 6 7 8 9 10 11 12 13 14 15 16
Θn 1 1 28 2 8 6 992 1 3 2 16256 2[

♠
]

according to [Hat83] the conjecture was stated in Smale’s review of a paper by J. Cerf, which the
author was unable to access
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hence many cases of the Smale conjecture are false. Falsehood of the Smale Conjecture
for n ≥ 5 has been generally known since 1980s, a good review of the results can be
found in [Hata]. A theorem by Crowley and Schick that πiDiff(Dn, ∂) ̸= 0 for infinitely
many i, for each n ≥ 7, proved in [CS13], disproves most cases of the Conjecture.

In 2018 Tadayuki Watanabe disproved the last open case of Smale Conjecture, for
n = 4, by constructing elements of π1Diff(D4, ∂). He has published two preprints on
arXiv: one with geometric reasoning [Wat19], and one from a homological viewpoint:
[Wat23], which also contains more details. It is also worth mentioning that Watanabe
had previously obtained results on higher homotopy groups of diffeomorphisms groups
of higher dimensional spheres obtained by similar methods to those introduced in this
paper, see [Wat09a] and [Wat09b].

Here we outline the idea of Watanabe’s proof. First, he constructs an invariant
of smooth disk bundles over the 2-sphere

[
♡
]
. Some extra structure on said bundles is

assumed along the proof, but is ultimately irrelevant for the result. Second, he construct
a bundle that has a nonzero value of the invariant. Finally, standard arguments relate
nontriviality of Watanabe’s bundle to a family of diffeomorphisms.

This text is mostly based on the [Wat23]. We present the definition of the invariant
and explain how Watanabe’s bundle disproves the Smale Conjecture. Effectively we
omit the construction of the bundle. We aim to give an as clear as possible explanation
of the result, hence we reduce the generality to dimension 4 only. We do however have
in mind extension of the methods to 4-manifolds other than spheres, so we mention
some generalizations of in the proofs.

2. Graph cohomology

Definition 2.1. By graph we mean a finite, connected CW-complex, with every vertex
of valence at least 3 (i.e., to every vertex there are at least 3 edges connected) and with
no self loops (i.e., every edge connects two different vertices).

Let Gul denote the Q-linear space spanned formally by graphs
[
♣
]
. There is an

obvious bigrading on Gul: by number of edges e and number of vertices v. We change it
to better reflect the combinatorial structure that we introduce in a while. Let k := e−v
and l := 2e − 3v, called degree and excess. Let PkGull denote the (k, l)-th bidegree,
PkGul :=

⋃
l PkGull and Gull :=

⋃
k PkGull . Note that

Z2 −! Z2

(e, v) 7−! (l, k)

is 1− 1. Also note that if k or l is negative then PkGull = 0 and finally note that Gul0 is
exactly the set of trivalent graphs. We then label the edges by numbers {1 . . . e} and
divide by the AS

[
♢
]

relation:

AS: Γ ∼ Γ′ ⇐⇒ Γ and Γ′ differ by an odd permutation of labels

Observe that it kills some of the graphs: those that have a CW-automorphism acting
as an even permutation of labels. Graphs with multiple edges form a simple class of
examples. Also note that any unlabeled graph can be labeled in an essentially unique
way up to sign, thus we usually skip the labeling on drawings. The idea behind AS is[

♡
]

In fact, in much grater generality, but beyond the scope of this text[
♣
]
ul stands for unlabeled since we will introduce edge labeling later[

♢
]

Stands for anti-symmetry.
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Figure 1: A graph in P3G1 representing 0 due to AS

unraveled later. Each edge is going to correspond to a differential form. Compactly:

Definition 2.2. Let G be the Q space of labeled graphs bigraded by l = 2e− 3v and
k = e− v with each bidegree denoted PkGl divided by AS.

Cohomology

On G we introduce differentials to make it into a chain complex. Let

δ(Γ) =
∑

i : edges of Γ

(−1)label(i)−1Γ/i

where Γ/i denotes the graph Γ with the edge i contacted. The sign change is due to the
differential form nature of edges. We want to be removing vectors of an anti-symmetric
space from the first position only, so when we remove the edge i we first need to perform
a number of sign-changing permutations. Observe that contracting two different edges
in two different orders induces opposite labelings on the resulting graph hence δ2 = 0.
Moreover, collapsing an edge shifts the l-grading by +1 making (G, δ) into a cochain
complex. Let

H l(G) = ker δ : Gl −! Gl+1

im δ : Gl−1 −! Gl
As δ does not change the k-grading we have a family of chain complexes and it makes
sense to write PkH l(G) = H l(PkG).

On G we have a canonical basis: the graphs themselves with coefficients 1, and the
standard scalar product which enables us to identify Gl with G∗

l . Define δ∗ : Gl −! Gl−1

by a matrix – the transposed matrix of δ in this standard basis. Then let

Hl(G) :=
ker δ∗ : Gl −! Gl−1

im δ∗ : Gl+1 −! Gl

The most interesting is the l = 0 degree – it deserves separate name:

Ak := PkH0(G) = PkG0/δ
∗(G1)

δ∗(G1) can be computed explicitly. Collapsing an edge locally looks like δ
−!

(the graph outside the circle stays untouched). Other graphs that are mapped by δ to

look locally like and . It is a choice of connecting four antennas to

two vertices in a trivalent way so there are
(
4
2

)
= 6 options but the two vertices can

always be swapped by a CW-homeomorphism so we are left with three possibilities.
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As δ∗ is δ⊺ we look at their sum which has to be zero. Hence Ak = PkG0/ IHX with
IHX being:

+ + = 0

Using this relation Ak can be computed by a brute-force as we know the number of
edges and vertices for each k. In particular

A2 ≃ Q
〈 〉

(this graph is often referred to as K4 or W4, although we will always use the graphical
symbol).

Special element ζ̃k

We now introduce a special element behaving like (1, . . . , 1) that can be projected to
any basis vector, thus it somewhat encodes the whole space.

Let Lk and L′
k denote the distinguished bases of PkG0 and PkG1. Let

ζk :=
∑
Γ∈Lk

Γ⊗ Γ ∈ PkG0 ⊗ PkG0

The encoding of the whole space works as follows:

∀γ∈PkG0∃
{

linear functional

Wγ : PkG0 −! Q

}
s.t. γ = (Wγ ⊗ id)ζk

=
∑
Γ∈Lk

Wγ(Γ)⊗ Γ
⟨⟩
7−!

∑
Γ∈Lk

Wγ(Γ)Γ ∈ PkG0

where ⟨⟩ denotes the evaluation map for a Q-space V :

Q⊗ V −! V

q ⊗ v 7−! qv

Since we have the chosen bases Lk and L′
k we have chosen the isomorphisms be-

tween PkG0, PkG1 and their duals. We abuse notation and write v = v∗. With this
identification we write:

(id⊗δ)ζk =
∑
Γ∈Lk

Γ⊗ δΓ =
∑

Γ′∈L′
k

δ∗Γ′ ⊗ Γ′ ∈ PkG0 ⊗ PkG1

as PkG1 ≃ im δ ⊕ ker δ, hence for Γ ⊗ δΓ ̸= 0, Γ ∈ PkG0
ker δ ≃ im δ, which is dual to

im δ∗ ⊂ PkG1, thus Γ = δ∗Γ′, for some Γ′. Then δΓ = δδ∗Γ = Γ. Note we have silently
restricted δ and δ∗ to the k-th grading.
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With that identification we compute:

[γ] ∈ PkH
0(G) ⇐⇒ 0 = δγ

= δ

〈
(Wγ ⊗ id)ζk

〉
= δ

〈
(id⊗δ)(Wγ ⊗ id)ζk

〉
= δ

〈
(Wγ ⊗ id)(id⊗δ)ζk

〉
= δ

〈
(Wγ ⊗ id)

∑
Γ′∈Lk

δ∗Γ′ ⊗ Γ′
〉

=

〈 ∑
Γ′∈Lk

Wγ(δ
∗Γ′ ⊗ Γ′)

〉
=

∑
Γ′∈Lk

Wγ(δ
∗Γ′)Γ′ = 0 ⇐⇒ ∀Γ′W (δ∗Γ′) = 0

⇐⇒ Wγ factors through

ker δ∗ = Ak as W γ : Ak −! Q

Thus, any [γ] ∈ PkH
0 is equal to (W γ ⊗ id)([·] ⊗ id)ζk with suitably chosen W γ .

We define
ζ̃k :=

1

(2k)!(3k)!
([·]⊗ id)ζk ∈ Ak ⊗ PkG0

which can be thought of as an element of PkH0(G,Ak) (cohomology with coefficients
in homology). In particular we will later make use of the fact that

(id⊗δ)ζ̃k = 0

The 1
(2k)!(3k)! factor comes from permutations of edges and vertices and is there to avoid

a constant later.

3. Vertically framed relative fiber bundles

In this section we develop the necessary extra structure of Watanabe’s bundle. This
are purely technical considerations.

Throughout this section (X −! E
π
−! B) is a fiber bundle. We often abuse the

notation and call the bundle just π.

Definition 3.1. A pointed fiber bundle is a fiber bundle π over a pointed space (B, ∗)
equipped with a choice of diffeomorphism: ξ : X −! π−1(∗). In other words, the
following diagram commutes:

X E

∗ B

∃ξ

π

Definition 3.2. An (X,A)-bundle (called relative fiber bundle) is a pointed bundle
X −! E −! B with fiber X and a chosen submanifold A ⊂ X such that the inclusion
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over the basepoint induces a trivial subbundle of E. In other words, the following
diagram commutes:

A X

B ×A E

∗

B

ι

∗×id
ξ

∃φ

pr1 π

Alternatively, we consider π as a Diff(X)-bundle, then restrict the structure group
to Diff(X,A) – diffeomorphisms of X fixing a neighborhood of A pointwise. Such
bundles (their associated principal bundles to be precise) are classified by BDiff(X,A).
We will be interested in D4-bundles that have trivial S3 = ∂D4-subbundles. Their
classifying space is called BDiff(D4, ∂) for short.

imξ ≃ X

imϕ ≃ B ×A

E

∗

. . .

. . .

Figure 2: A schematic picture of an (X,A)-bundle E −! B. Added for the reader’s
convenience.

We need even more structure: the vertical framing. Assume TX is trivial and pick
a trivialization

τ : TX −! RdimX ×X

The same can be applied to a fiber bundle. Let

T vE = ker dπ =
⋃
b∈B

TX

and suppose it is trivial. We call this this bundle the vertical tangent to E. Similarly
we define the vertical boundary :

∂vE =
⋃
b∈B

∂X

Definition 3.3. A choice of its trivialization

ε : T vE
≃
−! RdimX × E

is called a vertical framing.
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It is customary to fix one standard framing τ onX, and consider only those framings
that agree with τ on (im ξ ∪ imφ). In other words, we require the vertical framing ε
to satisfy the following commutative diagrams.

TX RdimX ×X

T vE RdimX × E

dξ

τ

id×ξ

ε

RdimX ×X RdimX × E

TX T vE

B × TX T vE|B×A

τ

id×ξ

pr2

ε

dφ

A conventional name for a vertical framing that extends τ is τE . Throughout the whole
paper we will only consider vertical framings for (D4, ∂)-bundles that agree with the
standard framing of D4 outside a bounded neighborhood of zero (standard at infinity).
Intuitively, we require that nothing interesting happens on the trivial subbundle. More
technically, we need that so we can identify the boundary of each fiber to a point –
the ∞, and identify tangent spaces to one: T∞S

4 to obtain the whole bundle TS4.
Non-standard framings could obstruct existence of bundle structure near ∞.

Note that a framing on X is a map X −! SO(dimX) to the special orthogonal
group. Let

Fr(X,A, τ)

be the space of framings on X that agree with τ on A (as in the previous paragraph,
standard at ∞) equipped with the compact open topology. In fact we have a homotopy
equivalence:

Fr(X,A, τ) ≃ [(X,A), (SO(dimX), ∗)]

Fr(X,A, τ) admits a left Diff(X,A)-action by

f . ε = ε ◦ (df)−1

Consider the principal Diff(X,A)-bundle:

EDiff(X,A) −! BDiff(X,A)

The product bundle EDiff(X,A) × Fr(X,A, τ) over BDiff(X,A) also admits a left
Diff(X,A)-action. The quotient

B̃Diff(X,A, τ) :=

/
EDiff(X,A)× Fr(X,A, τ)

Diff(X,A)

is still a bundle over BDiff(X,A), but with fiber Fr(X,A, τ). It is the classifying space
for pointed framed (X,A)-bundles, i.e., there is a bijection:[

(B, ∗), (B̃Diff(X,A, τ), ∗)
]
≃

{
isomorphism classes of framed

(X,A)-bundles over B

}
10



The proof is simple: EDiff(X,A)/Diff(X,A) classifies (X,A)-bundles, the product
with Fr(X,A, τ) takes into consideration all the possible framing, but some pairs (bun-
dle, framing) may be identified by bundle isomorphisms, hence we extend the action of
Diff(X,A).

Moreover, for (X,A) = (D4, ∂) we have homotopy equivalence with the unpointed (!)
map space:

Fr(D4, ∂, τ) ≃
[
S4,SO(4)

]
and thus a fibration:

[S4,SO(4)] −! B̃Diff(D4, ∂, τ) −! BDiff(D4, ∂)

which we use to compute the isomorphism:

0 = π2[S
4, SO(4)] −! π2B̃Diff(D4, ∂, τ)

≃
−! π2BDiff(D4, ∂) −! π1[S

4, SO(4)] = 0

Hence we see that we will be able to forget framing and focus on π2BDiff(D4, ∂) ≃
π1Diff(D4, ∂).

4. Configuration spaces and their compactifications

Differential-geometric blowups

In this subsection we consider a manifold X with possible boundary and corners and
its submanifold Y also with possible corners. We require that ∂Y ⊂ ∂X and that Y is
transverse to ∂X. See [Arn83, §2] for a more detailed treatment of the topic.

Definition 4.1 (Blowup). For a compact manifold X and a submanifold Y ⊂ X
transversal to (or intersecting vacuously with) ∂X we define the blowup of X along Y

Bℓ(X,Y ) = closure of
(
X ∖ Int νY ∖ Int νY |∂Y

)
in X

In other words we replace Y with its normal sphere bundle.

Example 4.2 (Blowup along a point). Let X = R2 and Y = (0, 0). Bℓ(X,Y ) is then
S1 × R+. This procedure is equivalent to the polar substitution:{

x = r sinφ

y = r cosφ
⇐⇒

R+ × S1 −! R2 ∖ (0, 0)

(r, φ) 7−! (x, y)

⇝

Figure 3: [−1, 1]× [−1, 1] blown up along (0, 0).

Example 4.3 (Blowup with boundary). This time let

X = D3 = {(x, y, z) ∈ R3|x2 + y2 + z2 ≤ 1}
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and Y = I = {x = y = 0}. Blowing up X along Y is replacing Y with a tube. Note
the behavior on ∂X i.e., we see here the necessity of ∖ Int νY |∂Y in the definition, and
how blowups produce corners.

Figure 4: D3 blown up along the vertical axis.

Lemma 4.4. Bℓ(X,Y ) is a manifold with corners
[♠
♠
]
. Moreover it admits the inclusion

ι : Bℓ(X,Y ) ↪−! X ∖ Y

which is a homotopy equivalence. Sometimes we call ι the blowup by abuse of nota-
tion.

[♡
♡
]

Remark 4.5. The normal bundle to Y is a subbundle of TX. Blowing up can be seen
as replacing Y with directions into (or out of) Y , thus vectors from TX.

It will be useful to view blown up manifolds not as manifolds with corners but as
stratified manifolds.

Definition 4.6 (cf. [Arn83], p. 230). A stratified submanifold of a smooth manifold
is a finite union of mutually disjoint smooth manifolds (strata) satisfying the following
condition: the closure of every stratum consists of the stratum itself and a finite union
of strata of smaller dimensions.

Since configuration spaces naturally embed into euclidean spaces this definition is
enough for our purposes.

Example 4.7. Consider

{(x, y, z) ∈ R3 | x = 0 ∨ y = 0 ∨ z = 0}

This space has a natural stratified structure: 12 open plane-quarters of dimension two
e.g. {x > 0, y > 0, z = 0}, six open half-lines of dimension one e.g {x > 0, y = z = 0},
and the point (0, 0, 0) of dimension zero. See Figure 5. We see that stratified manifold
is a form of manifold with singularities.

Example 4.8. Consider R2 blown up in (0, 0) and then along (the image of) {x = 0}.
The result has a canonical stratified structure. See Figure 6. There are six codimension
one strata: two pieces of the circle around (0, 0) and four codimension two points. In
higher dimensions, a blowup along a point and then along a line intersecting it has less
strata since S0 is the only non-connected sphere.

[♠
♠
]

See [Joy10] for a careful definition.[♡
♡
]
Usually in the literature the projection is the blowup, while the inclusion is the blow-down. However

in this context the opposite is more convenient
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Figure 5: {(x, y, z) ∈ R3 | x = 0 ∨ y = 0 ∨ z = 0}

Figure 6: Stratified Bℓ(Bℓ(R2,0), {x = 0})

Configuration spaces

Definition 4.9 (Configuration space). Let X by any topological space. The space

Cn(X) := {(x1, . . . , xn) ∈ Xn | xi = xj ⇐⇒ i = j}

is called the configuration space of n points in X. One can also define CΛ(X) for
Λ ⊂ {1, . . . , n} by forgetting xi for i /∈ Λ. The space CΛ(X) is the naturally diffeomor-
phic to C|Λ|(X), but sometimes remembering which points we forgot is important.

The space Cn(X) admits a tautological embedding

Cn(X) ↪−! Xn

and natural forgetful maps
ψΛ : Cn(X) −! CΛ(X)

It is often convenient to think of Cn(X) as Xn ∖
⋃

Λ∈{1,...,n}∆(Λ) where

∆(Λ) := {(x1, . . . , xn) ∈ Xn | xi = xj ⇐⇒ i, j ∈ Λ}

is called the Λ-diagonal or sub-diagonal when Λ is not specified.
One can think of Cn as a functor alternative to πn instead of counting maps from

spheres it counts maps from tuples of points. In other words, just as πn is represented
by Sn in the homotopy category, Cn is represented by n copies of a point, but in the
category of topological spaces with only inclusions as morphisms. To make up for that
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fact – we want Cn to incorporate information about collisions of points. Just allowing
them to collide it leaves us with Cn(X) = Xn hence we need to remember more
information: direction of the collision. Each collision corresponds to some sub-diagonal
so we attach boundary to Cn(X) along these sub-diagonals, finally constructing the
compactification Cn(X). This attaching of boundary is best formalized by blow-ups.

We introduce examples before stating the technical definition. We start with col-
lisions of two points. They look like limits of two points in X coming closer to each
other, or equivalently, like a single point in X2 approaching the diagonal. Hence C2(X)
should be X2 blown-up along ∆. Provided it exists, a trivialization of the unit normal
bundle to ∆ is exactly the identification of ∂Bℓ(X2,∆) with ∆× Sd hence it gives us
a notion of direction of collision by point in Sd and the place of collision by point in
∆. See figure below.

X

X

∆× S0

Figure 7: C2(X). Since X is 1-dimensional on the drawing the boundary is ∆× S0.

It is also worth noting that, provided both are trivial, the normal bundle to the
diagonal is isomorphic to the tangent bundle of the diagonal by: (x, x) 7−! (−x, x) in
each fiber. This is the case for X parallelizable. In order to be coherent with Section 3,
we will usually use the term framing for the trivialization.

Collisions of three or more points are more subtle. One way to see the reason behind
is by observing that n-point sub-diagonals are contained in multiple (n− 1)-point sub-
diagonals (are even the their intersections). For the sake of simplicity let us examine
C3(R). Assume we have already accounted for 2-point collisions i.e., blown up along
∆(1, 2), ∆(2, 3), ∆(1, 3) – replaced these planes with their double copies R2 × S0. For
now we ignore any issues with the order of blow-ups. The big diagonal ∆(1, 2, 3) has
already been blown up three times hence there are 23 = 8 copies of it. A cross sections
looks like in the figure below.

Figure 8

Each corner is a preimage of ∆(1, 2, 3) in the blow-down map to X3. To model a
triple collision we can approach ∆(1, 2, 3) along the boundary – by first colliding two
points or through the interior only – performing a simultaneous collision. We want to
distinguish these types of collisions. Technical way to do this is by blowing up ∆(1, 2, 3)
first and only then the sub-diagonals. Conveniently the sub-diagonals become disjoint
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as their intersection had already been blown-up thus there are no problems with order
of blow-ups. A cross-section of the result looks like figure below.

Figure 9

The "round" boundary corresponds to simultaneous collisions. From the other
viewpoint – C3(R) as triples of points on a line – looks like in the figure below.

1 2 3 or 1 2,3

Figure 10

Observe that there are six "round" parts in Figure 9 corresponding to six possible
arrangements of three points before the collision – six possible threefold-directions of
collision.

It is also educational to analyze the C2(R2) since in this case the sub-diagonals
no longer separate (R2)3 and (equivalently) the sphere bundles have circles in fibers
instead of S0s allowing to see nontrivial behavior. The unit normal bundle to the big
diagonal can be identified (by the framing!) with S3 × R3. In a cross-section, the
direction of a threefold collision is parametrized by a point (or better called angle) in
S3. We want to see it as three points in R2. Say they meet in a distinguished point x
(so we work on a cross-section over (x, x) ∈ ∆). They each approach x from an angle
φi ∈ S1, i ∈ {1, 2, 3}. Three such angles parametrize the 3-sphere.

All of the above can be performed for arbitrary manifold with corners.

Definition 4.10 (Differential Fulton-MacPherson compactification). LetX be a closed
manifold with possible corners. Consider Xn and blow it up along ∆(1, . . . , n), then
along (the preimages in the blowdown of) ∆(Λ) for |Λ| = n − 1, then along ∆(Λ) for
|Λ| = n− 2 and so on until |Λ| = 2. The resulting space is called Cn(X).

The following lemma is a straightforward corollary of definition of blowup.

Lemma 4.11. Cn(X) is a manifold with corners. Moreover the inclusion
Cn(X) ↪−! Cn(X) is a homotopy equivalence.

Remark 4.12. For a smooth map X −! Y it is obvious that the induced map
Cn(X) −! Cn(Y ) exists. This map extends to the boundary as the derivative by
the identification in Remark 4.5. This phenomenon makes Cn an invariant tailored for
distinguishing exotic structures, as it uses up one degree of differentiability.

As shown in [LX23] and [Che24], Cn is far from a perfect invariant, as it depends on
slightly less than the differential structure – a formal smooth structure. That means it
cannot directly distinguish between two exotic copies of the same manifold. However,
it still detects exotic phenomena, example being the Watanabe’s bundle.
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Compactification of C∗(R4)

We also describe a compactification of Cn(R4) – of a noncompact manifold. The ide-
ological reason to do so is we are interested in Diff(D4, ∂), hence we want to embed
the points in IntD4 ≃ R4. For the compactification we need to attach boundary cor-
responding to collisions and to points going infinitely far from 0. In other words, the
latter means choice of compactification of Rd, which for us is the usual Sd.

For this procedure we need yet another way of viewing Cn(X). It is a choice of
the first point in X, then a choice of the second point in X ∖ ∗, then of the third in
X ∖ {∗∗}, and so on. . . One is tempted to claim that

Cn(X) ≃ X × (X ∖ ∗)× (X ∖ {∗∗})× . . .

It is not true in general, but true locally: Cn(X) is a fiber bundle over each of these
components, in particular over X itself. Let ρn be the projection map Cn(X) −! X.
It obviously extends to Cn(X) smoothly. The fiber over any point in x ∈ X is the
configuration space of n− 1 in X ∖ x.

Definition 4.13. View S4 as R4∪∞. Let Cn(S4;∞) denote the preimage of ∞ under
ρn+1 : Cn+1(S

4) −! S4. Since it is a subspace of a compact space Cn+1(S
4) it can be

closed in it resulting in the compactification Cn(Sd;∞).

Proposition 4.14. C2(S
4;∞) is homotopy equivalent to S3. Thus

H∗(C2(S
4;∞),Z) ≃

{
Z for ∗ = 0 or 3
0 otherwise

Moreover

H∗(C2(S
4;∞), ∂,Z) ≃

{
Z for ∗ = 5 or 8
0 otherwise

Proof.

C2(S
4;∞) = closure of C2(R4) ≃hty C2(R4) = R4-bundle over (R4 ∖ ∗) ≃hty S

3

The second statement follows from the Poincaré–Lefschetz duality:

H∗(C2(S
4;∞), ∂,Z) ≃ H8−∗(C2(S

4;∞),Z) ≃ H8−∗(S
4,Z)

⊠

Codimension one strata

Observe that the construction of Cn(X; ∗) is well defined not only for spheres, but
for any closed manifold X. In this subsection we give a description of the boundary
of Cn(X; ∗). For X almost-parallelizable the result is particularly well-behaved. We
analyze the codimension one strata, which form the full-measure part of boundary.
Each such stratum corresponds to a subset of N ∪ ∗ – collision of points that has been
blown up.

Definition 4.15. Let X̊ denote the manifold X with a point cut out, choice of which
is irrelevant. A manifold Xd is almost-parallelizable if TX̊ is a trivial Rd-bundle over
X̊.
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Remark 4.16. Some authors use the term almost-parallelizable for manifolds whose
tangent bundle becomes trivial after summing it with a trivial bundle of some dimen-
sion. These are different notions.

Note that all spheres are almost parallelizable, moreover for d ̸= 1, 3, 7, Sd is not
parallelizable itself, but almost parallelizable.

Until the end of this subsection X is an almost-parallelizable closed manifold. The
boundary of Cn(X; ∗) consists of various codimension 1 strata that correspond to col-
lisions of certain points and their closures. Here we describe the strata explicitly.

Definition 4.17. Let V be an R-linear space of dimension d. Define

C∗
n(V ) :=

/
Cn(V )

diagonal translations & scaling

=

/
V n

(x1, . . . , xd) ∼ (x1 + v1, . . . , xd + vd)
(x1, . . . , xd) ∼ (cx1, . . . , cxd)

for v ∈ V n(≃ Rnd), c ∈ R∖ 0

(∗)

Similarity we define C∗
Λ(V ).

Remark 4.18. C∗
n(V ) can be also defined as a subspace of Cn(V ) cut out by equations:

n∑
i=1

|xi|2 = 1,
n∑
i=1

xi = 0 (∗1)

or alternatively:
n−1∑
i=1

|xi|2 = 1, xn = 0 (∗2)

Proof.
(∗1)⇝(∗2): shift by −xn, rescale as needed.
(∗2)⇝(∗1): shift by 1

n

∑
xi, rescale as needed.

any⇝(∗1): shift by −xn, rescale as needed. What is left is to prove that no elements
in (∗2) are identified by (∗). It is true, because any operation (∗2)⇝(∗1) is diagonal
and id on xn = 0, hence is at most a scaling, but the other norms are fixed, so it is
id. ⊠

Example 4.19. For two points the construction is quite simple.

C∗
2 (V ) =

{
(x1, x2) ∈ V × V | |x1|2 = 1, x2 = 0

}
= the unit sphere in V

We will use this isomorphism several times.

The space C∗
n(V ) admits two canonical constructions:

Definition 4.20. Define C∗
r(V ) as the closure of C∗

n(V ) in Cn(V ).

Definition 4.21. For a vector bundle π : E −! B define C∗
n(π) by applying C∗

n(−)
fiberwise. This of course admits closure too, i.e. C∗

n(π).

The space C∗
n(V ) models a configuration behavior: it corresponds to relative config-

urations – we forget where the points actually are and only care about their distances
to one another. This is useful when describing codimension one strata.
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Suppose we have an almost-parallelizable manifold X and want to understand the
codimension one strata of Cn(X). They occur as the point collide. Suppose a collision
of subset Λ happens at point x ∈ X, that is we consider the subset of Cn(X) consisting
of limits of configurations where xi −! x, i ∈ Λ. Denote this stratum SΛ. The points
xi after the blow-up are represented by the directions in which they approach x hence
they live in the tangent space TxX. Their exact position in this space is not uniquely-
defined, we may shift and scale them arbitrarily. It is then convenient to represent them
’centered around 0’ like in (∗1) or (∗2). We care, however about their relative distances
to one another as it may happen that some of them collide before the common collision,
hence the actions of scaling and shifting have to be diagonal. Thus we have obtained
C∗
Λ(TxX) with a canonical projection to x ∈ X. In fact the choice of x is redundant

and we actually end up with C∗
Λ(TX) – the ’configurated’ and ’asterisked’ TX̊ whose

fiber is C∗
Λ(Rd). Finally, to account for points not from Λ we need to consider the space

Cn,Λ(X) := {(x1, . . . , xn) ∈ Xn | xi = xj ⇐⇒ i = j ∨ i, j ∈ Λ}

isomorphic to Cn−|Λ|+1(X). It parametrizes configurations of points not from Λ to-
gether with the point x, so can be thought of as CN∖Λ∪x(X). It is also equipped with
a canonical map:

ϑ : Cn,Λ(X) −! X

that takes the Λ–collision points to their location in X, i.e., forgets the factors outside
of Λ and maps the rest by projection to X. SΛ is then the pullback of the C∗

Λ(TX)
bundle from single X to Cn,Λ(X).

To take advantage of the almost-parallelizability of X we need to consider the space
Cn(X;x) ≃ Cn(X̊). In the case x /∈ Λ the above description stays the same except for
the fact that now SΛ is a bundle over Cn,Λ(X̊) that comes from TX̊ by fiber substitution
and pullback, thus is a trivial. Diagrammatically:

SΛ C∗
|Λ|(TX̊)

Cn,Λ(X̊) X̊

⌟

ϑ̊

Write N = {1, . . . , n}. The compactification is straightforward:

Proposition 4.22. For an almost parallelizable closed manifold Xd and a subset
Λ ⊂ N , x /∈ Λ:

SΛ ≃ CN∖Λ+1(X)× C
∗
Λ(Rd)

Remark 4.23. If X is not almost-parallelizable then we have a fiber bundle:

C
∗
Λ(Rd) −! SΛ −! CN∖Λ+1(X)

whose bundle isomorphism type depends only on TX̊.

It is, however, not straightforward how the component C∗
Λ(Rd) looks like. First,

observe that if |Λ| = 2 then by (∗2), C∗
Λ(Rd) ≃ Sd−1 so is already compact. For |Λ| > 2,

what we get in the compactifications are all the sub-collisions: configurations of points
from Λ with some subset colliding before the others. Hence, in C∗

Λ(Rd) we have C∗
K for

all subsets K ⊂ Λ. Inductively, the same phenomenon occurs for subsets with |K| > 2.
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Example 4.24. As an example we include Figures 11 and 12 of points in compactifi-
cations of C6(S

2;∞). Each figure is one point in C6(S
2;∞) – one configuration. We

use funnels to depict closeness. When a point x is in the funnel over point y it means
’x is hits y’ or ’x is infinitely close to y compared to all other points’.

∞
1

23

4

56

C∗

3,4
(R2) ∋





























∈ C∗

1,2
(R2)

Figure 11: 1 hits 2 and 3 hits 4 not in ∞. In fact the points can never meet in ∞, only
arbitrarily close to it. We abuse phrasing for simplicity.

1

∞

2 3

45 6















∈ C∗

1,2
(R2)















∈ C∗

2,3
⊂ C

∗

1,2,3
(R2)

C
∗

4,5,6
(R2) ∋







Figure 12: 2 hits 1 and then 3 hits them while 4, 5, 6 collide simultaneously in ∞.
Note, that although 1, 2, 3 are collided, 1 is ’infinitely closer’ to 2, than 3 is. Also
note, that 4, 5, 6 need two funnels. It is because collision never happens in ∞, only
’infinitely close’.

In case x ∈ Λ the reasoning is the same, but now the point of collision is fixed to ∗
therefore we pullback by the projection map:

ϑ : CN∖Λ(X̊)× x −! x

and the bundle projected is:
C∗
Λ(TxX)

x

The diagram looks as follows:

SΛ C∗
Λ(TxX)

CN∖Λ(X̊)× x x

⌟

ϑ

Moreover observe that |N ∖ Λ| = n− (|Λ| − 1) because one of the point from Λ is not
in N . Accounting for closures we end up with the proposition:
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Proposition 4.25. For a closed manifold Xd and a subset Λ ⊂ N ∪ x, x ∈ Λ:

SΛ ≃ CN∖Λ(X̊)× C
∗
Λ(Rd)

Remark 4.26. Observe that for X almost-parallelizable, despite the differences in
construction, in both cases we end up with isomorphic spaces:

SΛ = Cn−|Λ|+1(X̊)× C
∗
|Λ|(Rd)

Example 4.27. As an example we describe the space C2(S
4;∞) in detail. It is the

space of configurations of 2 points in S4 with a distinguished point ∞ ’forbidden’. Its
boundary is parametrized by the 4 subsets of {1, 2,∞} of cardinality at least 2:

1. S1,2 = {collisions of 1 and 2 but not in ∞}

2. S1,∞ = {1 hitting ∞, but not 2}

3. S2,∞ = {2 hitting ∞, but not 1}

4. S1,2,∞ = {collision of 1 and 2 in ∞}

We first blowup along S1,2,∞. Then along all other subsets. A schematic picture is
similar to Figure 9.

AB

CD
E

Figure 13: C2(S
4;∞). The four codimension one strata are denoted with different

colors: S1,2 with green, S1,∞ with blue, S2,∞ with red and S1,2,∞ with black. Their
intersections, the corners, form the codimension two strata. The letters denote the five
possible types of regions in the boundary. They are drawn in Figure 14

The codimension one strata can be explicitly described:

1. S1,2 = C1(S̊
4)× C

∗
2(R4) ≃ R4 × S3

2. S1,∞ = C{2}(S̊
4)× C

∗
2(T∞S

4) ≃ R4 × S3

3. S2,∞ = C{1}(S̊
4)× C

∗
2(T∞S

4) ≃ R4 × S3

4. S1,2,∞ = ∞× C
∗
3(T∞S

4)

The isomorphisms above are diffeomorphisms, not only homotopy equivalences.
In Figure 13 we see there are five types of boundary regions, labeled A, B, C, D and

E. We include figures from a tuples-on-manifold instead of product-without-diagonals
point of view. See Figure 14
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AB

CD
E

Figure 13 repeated for the
Reader’s convenience

∞

1

2

A. S1,∞

∞

1

2

B. S1,∞ ∩ S1,2,∞

∞

1 2

C. S1,2,∞

∞

1 2

D. S1,2 ∩ S1,2,∞

∞
1

2

E. S1,2

Figure 14: The five types of boundary regions of C2(S
4;∞). The S4 is depicted as S2.

5. Propagators

It is desirable to know the (co)homology of configuration spaces. Roughly speaking we
expect any homology class of CnX to come either from X (due to product of Xs in the
definition) or from collisions of points (the cut-out sub-diagonals). In the case X = Rd
this heuristic happens to produce useful results: we are able to find some homology
classes parametrized by collisions of points, moreover just two points. Propagators
are exactly these classes. Due to Poincaré–Lefschetz duality we can think of them as
differential forms. Here we describe the construction of propagators for Cn(R4).

Proposition 5.1. The cohomology group H3
dR(S

3) is generated by the volume one
form:

volS3 =
1

2π2
(x1 dx2 dx3 dx4 − x2 dx1 dx3 dx4 + x3 dx1 dx2 dx4 − x4 dx1 dx2 dx3)

Moreover, the sphere admits an involution:

ι : S3 −! S3

x 7−! −x

that is homotopic to id, thus induces id on cohomology, in particular ι∗(volS3) = volS3

Lemma 5.2 (Gauss map). A map given by

φ : C2(R4) −! S3

(x1, x2) 7−!
x2 − x1

||x2 − x1||
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called the Gauss map extends to the compactification as

φ : C2(S
4;∞) −! S3

Moreover, both φ and φ are homotopy equivalences.

Proof. We see that C2(R4) ≃ R4 × (S3 × R). The map φ is the choice of direction x1
to x2. It factors through the projection to S3×R since it is invariant to diagonal shifts
of x1 and x2, and acts as projection to S3. Both of these reductions are homotopy
equivalences.

Continuous extension to the boundary is straightforward: φ returns the angle of
collision. It is smoothness that requires a careful proof, see [Wat23, Lemma C.11]. ⊠

Note that the Gauss map is coordinate-dependent. We now construct its analogue
that requires framing instead. This will be useful for a bundle of configuration spaces,
where he we have no global coordinates, but framing defined in Section 3 provides
necessary structure for trivialization of tangent bundle over each fiber.

Pick a standard at ∞ framing
[♣
♣
]
τ : T (S4 ∖∞)

≃
−! (S4 ∖∞)×R4. By Remark 4.5

it induces a map p(τ) : ∂Cn(S
4;∞) −! S3. On the codimension one strata p(τ) can

be explicitly written as:

p(τ) =


S1,2 = C1(S̊

4)× C∗
2 (R4)

τ
−! R4 × S3 projection

−−−−−−! S3

S1,∞ = C{2}(S̊
4)× C∗

2 (T∞S
4)

projection
−−−−−−! C∗

2 (T∞S
4) ≃ S3

S2,∞ = C{1}(S̊
4)× C∗

2 (T∞S
4)

projection
−−−−−−! C∗

2 (T∞S
4) ≃ S3

S1,2,∞ = ∞× C∗
3 (T∞S

4)
(∗2)
↪−−! C2(R4 ∖ 0)

φ
−! S3

We see that p(τ) agrees with φ as both maps return the angle between two points.

Lemma 5.3. The 3-form p(τ)∗volS3 extends smoothly to a 3-form ω on Cn(S
4;∞).

Moreover, such extension is unique in cohomology.

Proof. See Lemma 5.5. ⊠

Definition 5.4. The cohomology class [ω] from the above lemma is called propagator
in fiber.

Suppose we are given a (D4, ∂)-bundle π : E −! B, where B is a compact mani-
fold with possible boundary, equipped with a vertical framing τE . We transform it to
a (S4,∞)-bundle by collapsing the boundary of each fiber to a point. Then we per-
form a fiberwise configuration: replace each fiber with Cn(S

4;∞). It is possible since
configuration spaces admit the diagonal Diff(S4;∞) action. Denote this bundle

Cn(π) : ECn(π) −! B

For n = 2 we define a propagator for this bundle.
The framing τE induces a map

p(τE) : ∂
vECn(π) −! S3

Recall, that by definition it is required to be standard at ∞ in all fibers.[♣
♣
]

See the passage below Definition 3.3 for the meaning of standard.
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Lemma 5.5. The 3-form p(τE)
∗volS3 extends smoothly to a 3-form ω on ∂vEC2(S

4;∞).
Moreover, such extension is unique in cohomology.

Proof. Consider the Leray-Serre spectral sequence for the relative fibration:

(C2(S
4;∞), ∂) −! (EC2(S

4;∞), ∂v) −! B

The E2 page is given by the formula

Ep,q2 = Hp(B;Hq(Cn(S
4;∞), ∂)) = Hp(B)⊗Hq(C2(S

4;∞), ∂)

= Hp(B)⊗ 0 for q ̸= 5, 8 (Proposition 4.14)

therefore the sequence for q < 5 converges to

Hn(EC2(S
4;∞), ∂v) = 0 for n ̸= 5, 8

Now consider the relative exact sequence of the pair (EC2(π), ∂
v), we see the isomor-

phism:

0 = H3(EC2(π), ∂
v) −! H3(ECn(π))

≃
−! H3(∂vEC2(π)) −! H4(EC2(π), ∂

v) = 0

Hence any closed form of the vertical boundary extends to the whole space EC2(π)
For uniqueness consider any other extension ω′. The difference ω − ω′ vanishes on

the boundary thus is in the image of the natural arrow

H3(EC2(π), ∂
v) −! H3(EC2(π))

which is zero. ⊠

Definition 5.6. The cohomology class [ω] from the above lemma is called propagator
for framing τE .

Proposition 5.7. Propagators extend overs cobordisms. That is: for a framed (D4, ∂)–
bundle (π : E −! B, τE) over a cobordism B between manifolds B1 and B2 consider
propagators ω1 and ω2 for τE on EC2(π) suitably restricted. Then there exists a
propagator ω for τE on the whole EC2(π) that extends both ω1 and ω2.

Proof. We pullback ω1 and ω2 to the collar neighborhoods Bi×[−ε, ε], without changing
notation. The identification of the collar neighborhoods with Bi× [−ε, ε] can be chosen
such that it is compatible with τE . Define

B′ = B ∖ B1×[0, ε]∖B2 × [0, ε]

By Lemma 5.5 there exists a propagator for τE on EC2π, call it ωa. We now have two
propagators on each collar neighborhood, hence, again by Lemma 5.5, they differ by
exact forms that vanish on the vertical boundary. In other words, there exist µ1 and
µ2 in such that

ωa − ω1 = dµ1, ωa − ω2 = dµ2

on Bi × [−ε, ε]. The 2-forms µi can be extended to the form µ on the whole space
EC2(π) that also vanishes on the vertical boundary, since they are defined on disjoint
closed codimension zero subsets. Consider a smooth function χ : EC2(π) −! [0, 1] that
takes value 1 on C2(π)

−1(∂B) and 0 on C2(π)
−1(B′). Define the 3-form

ω = ωa + d(χµ) on EC2(π)
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We see that

ω|∂vEC2(π)
= ωa|∂vEC2(π)

ω|C2(π)−1Bi
= ωi

So ω is a propagator for τE that extends both ω1 and ω2. ⊠

Remark 5.8. A propagator in a fiber is a class in H3
dR(C2(S

4;∞)). By the Poincaré–
Lefschetz duality this group is isomorphic to H5(C2(S

4;∞), ∂C2(S
4;∞),R), hence we

can represent a propagator as a class in such. This approach is employed in [Wat19]
and thoroughly described in [Les24]. In our case, the explicit image of the propagator is
rather hard to compute, however due to Proposition 4.14 we need not do that, as both
groups are isomorphic to the coefficient module. By definition, the chain representing
the propagator needs to have boundary in ∂C2(S

4;∞). See Figure 15 for an example.

S1
×∞

∞× S1

Figure 15: A propagator for S1. The Gauss map is replaced by S1 × S1 −! S0 with
the same formula.

6. Configuration space integrals

In a single manifold

Recall graphs from Section 2. I to each graph we introduce a form that counts the
collisions of vertices connected by edges. Choose a graph Γ ∈ G with v vertices, e edges
and its embedding into IntD4 ≃ R4. Since it is a codimension three embedding, for a
choice of |v| points embedded in R4, there is only one way up to isotopy of embedding
the edges. Thus every such embedding is associated to a configuration of v points in
D4 up to ordering of the vertices. Choose the ordering arbitrarily. Moreover, choose
orientations of edges of Γ, also arbitrarily. We have a forgetful map

ψi : Cv(R4) −! C2(R4)

defined by for each edge by forgetting the vertices outside the edge i. Define a linear
map

ωfib : G −! Ω3e
dR(Cv(S

4;∞))
[♢
♢
]

Γ 7−!
∧

i : edges of Γ

ψ∗
i φ

∗volS3 =
∧

i : edges of Γ

ψ∗
i ω

[♢
♢
]
fib stands for fiber since we will later define this notion for families of manifolds
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Recall that edges of Γ are labeled, thus the order of propagators in the wedge is uniquely
determined. To every graph we assign a 3e-form on an 4v-dimensional manifold. We
want to integrate it later, so we need 3e = 4v, while keeping the graphs at least trivalent:
3v ≤ 2e (for every vertex we need at least three edges and one edge can be used for
two vertices). These lead to a contradiction: 4v = 3e ≥ 9

2v. The remedy is bundleizing
this construction. We will have a 3e-form on a dim = 4v-bundle over a 2 dimensional
manifold, that leads to 3e = 4v + 2. This equation has a solution compatible with
at-least-trivalency: e = 6, v = 4.

It is however worth noting, that in dimension 3, the equality we get is 2e = 3v.
Therefore the procedure produces invariants of 3-manifolds, not of bundles. See [Les24]
or [LMO98].

In a family

Recall the bundle
Cn(π) : ECn(π) −! B

As previously, we have the forgetful maps in each fiber

ψi : Cv(R4) −! C2(R4)

which induce
Eψi : ECv(π) −! EC2(π)

We finally have the linear map

ω : G −! Ω3e
dR(ECv(π))

Γ 7−!
∧

i : edges of Γ

(Eψi)
∗ω

with 3e-forms on an 8v + dimB-manifold in its image. Note that ω(Γ) is closed as a
pullback of a closed form. Using the Fubini’s Theorem we can integrate these forms
along fibers. We obtain a linear map

I : G −! Ω
(3e−4v)
dR (B)

Γ 7−! Cv(π)∗ω(Γ)

We denote the process of integration Cv(π)∗ since it is in fact a pushforward by the
projection map.

When we take into account the grading on G by k = e− v, l = 2e− 3v we see that
I is in fact a map between two l-graded linear spaces:

I : PkGl −! Ω
(k+l)
dR (B)

Theorem 6.1 (Kontsevich, Watanabe).

(1) I is a chain map up to sign:

dI(Γ) = (−1)k+l+1I(δΓ)

hence induces
I∗ : PkH

l(G;Ak) −! Hk+l(B;Ak ⊗ R)
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(2) I∗ is independent of the choice of the propagator

(3) I∗ is independent of the choice of directions of edges

(4) I∗ is invariant with respect to homotopy of τE

(5) I∗ is natural with respect to bundle morphisms. That is: for a bundle morphism
of framed bundles over base spaces B and B′ induced by the map f : B −! B′

the following diagram commutes:

PkH
l(G,Q) Hk+l(B,R)

Hk+l(B′,R)

I∗

I∗
f∗

Hence I∗ is sometimes called the Kontsevich characteristic class.

Remark 6.2. The whole Section 2 is motivated by Theorem 6.1(1). The graph differen-
tial and thus IHX are chosen as they are, in order to have a chain map. Anti-symmetry
of graphs mirrors anti-symmetry of differential forms. Reason for trivalency can be
found in the proof, see Lemma 7.4.

The gist of the theory is that the suitable differential on th graph space looks very
natural thus provides a convenient combinatorial framework.

We could have introduced the whole Section 2 only now as a natural consequence
of Theorem 6.1, however it would lead to some awkward arguments and notations.

Remark 6.3. In principle, the integral measures the degree of the Gauss map for each
edge, this suggests that the result should be integral itself. It is however nit true,
because of the compactification. We cannot even assume rationality of the integral.

7. Proof of Theorem 6.1

Before the proof we need to introduce a number of lemmas. We begin with a crucial
general theorem.

Theorem 7.1 (Stokes theorem for fibre bundles, see [BT94] for reference). For a fiber
bundle π : E −! B with a compact oriented n-dimensional fiber, its restriction to
fiberwise boundary π∂ : ∂vE −! B and a p-form α on E, where n ≤ p:

dπ∗α = π∗dα+ (−1)p−nπ∂∗α

We will now describe the form ω(Γ) and use Stokes theorem to compute the value of
the integral. We replace (S4;∞) with arbitrary almost-parallelizable, pointed, closed
4-manifold (X,x) to emphasize proof’s independence of S4. Nonetheless, the Theorem
is well-stated only for S4. The author is currently on a definition of propagator for
other manifolds, which is the main missing ingredient.

Recall the description of codimension 1 strata of Cv(π) from Section 4. It carries
to the bundleized version without changes that is:

∂vECv(π) =
⋃

Λ⊂N∪∞
ESΛ

ESΛ ≃ ECv,Λ(π)× C
∗
|Λ|(R4) if ∞ /∈ Λ

ESΛ ≃ ECN∖Λ(π)× C
∗
|Λ|(R4) if ∞ ∈ Λ

26



Denote the projections p1 and p2. Let πΛ denote the restriction of ECv(π) to ESΛ. Re-
call also that Cv,Λ(X) ≃ CN∖Λ(X) ≃ Cv−|Λ|+1(X) which is also true in the bundleized
version.

Provided Λ is a subset of N (∞ /∈ Λ) denote with ΓΛ the subgraph of Γ spanned
by Λ and Γ/Λ the result of contracting ΓΛ in Γ. These will correspond with the
factors of SΛ ≃ Cn,Λ×C∗

Λ(R4) which roughly parametrize ’configurations of not Λ’ and
’configurations of Λ collided’.

Proposition 7.2. The form ω(Γ) restricted to strata decomposes as:

ω(Γ)|ESΛ
= ±p∗1ω(Γ/Λ) ∧ p∗2ω(ΓΛ) if ∞ /∈ Λ

ω(Γ)|ESΛ
= ±p∗1ω(Γ/(N ∖ Λ)) ∧ p∗2ω(ΓN∖Λ) if ∞ ∈ Λ

Where the sign is the sign of the permutation

{1, . . . , e} −! {edges of Γ/Λ} ∧ {edges of ΓΛ}

Proof. Proof of both cases is the same. We present the proof of the first one.
We need to justify why these pullbacks make sense, since a priori the domains do

not agree. Recall the definition of ω(Γ):∧
i : edges of Γ

(
ECv(π)

Eψi−−! ECendpoints of i(π)
)∗
ω

It can be rewritten as: ∧
i : edges of Γ/Λ

Eψ∗
i ω ∧

∧
i : edges of ΓΛ

Eψ∗
i ω

For the first term we observe that the forgetful map Eψi factors through p1 as:

ECv(π) ECendpoints of i(π)

ECv,Λ(π)

Eψi

p1

as we may first forget the points from Λ and then the rest.
The second term is more complicated. It is explained by the diagram:

SΛ Cvertices of Γ/Λ(X;x)× C
∗
|Λ|(R4) Sendpoints of i Cendpoints of i(X;x)

C
∗
|Λ|(R4) C2−2+1=1(X;x)× C

∗
2(R4) S3

C∗
2 (R4)

≃

p2 ≃ φ

φ′

projection ≃

We skip E and draw the diagram in a single fiber for readability. Note that when
we work in a fiber, Cn(X) admits coordinates, thus φ is well defined. This time,
the forgetful map ψi factors through the stratum corresponding the collision of the
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endpoints of i. The map φ′ is the induced Gauss map on the subspace X̊ × C
∗
2(R4) ⊂

C2(X) hence the square commutes. Moreover, since C∗
2(R4) ≃ S3 it already is the

space of directions of collisions, φ′ is a projection composed with id.
We remark writing p∗2ω(ΓΛ) is a slight abuse of notation.
The signs are self-explanatory. ⊠

Remark 7.3. The above description is also valid for whenX is not almost-parallelizable,
except for the fact that only locally. That is: let U =

⋃
Ui be the trivializing cover for

the C∗
Λ(TX̊)-bundle over ESΛ (induced from this bundle over ECn,Λ(π)). Over any

Ui the projection to the fiber is now well defined, call it pi2. Then

ω(Γ)|Ui = ±p∗1ω(Γ/Λ) ∧ pi∗2 ω(ΓΛ)

where p1 is suitably restricted. For ∞ ∈ Λ this need not be done, the product structure
is independent of X.

We now use this decomposition of ω(Γ) to apply Fubini’s theorem. We show that
most integrals along C∗

|Λ|(Rd) vanish.

Lemma 7.4. When |Λ| ≥ 3
πΛ∗ ω(Γ) = 0

Proof. There are four cases:

1. ΓΛ has all vertices of valence 3

2. ΓΛ has a 2-valent vertex

3. ΓΛ has a univalent vertex

4. ΓΛ has a vertex with 0 edges

Case (1): We use a dimensional argument. Let v′ and e′ denote the numbers of
vertices and edges of ΓΛ. The trivalency condition implies

2e′ − 3v′ ≥ 0

Due to the fiber bundle structure of ESΛ we first integrate along the fiber C∗
|Λ|(Rd),

(|Λ| = v′), which is of dimension 4(v′−1)−1. On the other hand ω(ΓΛ) is e′-ary wedge
of of 3-forms. For the integral to be non-zero we need degω(ΓΛ) to be precisely the
dimension of the space on which we integrate, that is:

4(v′ − 1)− 1 = e′(4− 1) ⇐⇒ e′ =
4(v′ − 1)− 1

(4− 1)

Combining the above, we get the inequality

2
4(v′ − 1)− 1

3
≥ 3v′

8(v′ − 1)− 2 ≥ 9v′

8v′ − 10 ≥ 9v′

which is impossible for v′ > 0.
Case (2): Again, as we are integrating along a fiber we can choose coordinates. The

Gauss map φ is then well defined, and agrees with p(τE) where it makes sense.
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Call the 2-valent vertex a, and the two adjacent vertices b and c. We may assume
they are different since multiple edges produce ω(Γ) = 0. Consider CΛ(R4) with posi-
tion of point λ ∈ Λ denoted xλ ∈ R4. Recall that C∗

Λ(R4) is a subset of CΛ(R4) given
by the equation: ∑

i∈Λ∖κ
|xi|2 = 1, xκ = 0

where κ is any element of Λ.
Consider the automorphism ιΛ that acts on the a-th component as

xa 7−! xb + xc − xa =: x̃a

and is id on all other components. It is only well defined on C∗
Λ(R4) ∖ C, where C is

the codimension 4 subset of CΛ(R4) given by xe = xb + xc − xa, for some e ̸= a. The
restriction of C to C∗

Λ(R4) is also of codimension 4.

xb

xa

xc

x̃a

Figure 16: Note that the edges connecting xb with xa and x̃a both represent the edges
of Γ with endpoints in a and b but in spaces C∗(R4) and ιΛ

(
C∗(R4)

)
. Hence the map

φ′ψab that takes direction between xa i xb is also the map that takes the direction
between x̃a and xb depending on where a is located. Similarly for xc.

Recall ι of Proposition 5.1. We have the following commutative diagrams:

C∗
Λ(R4) S3 C∗

Λ(R4) S3

C∗
Λ(R4) S3 C∗

Λ(R4) S3

(. . . , xa, xb, xc, . . . )
xa−xc
|xa−xc| (. . . , xa, xb, xc, . . . )

xa−xb
|xa−xb|

(. . . , x̃a, xb, xc, . . . )
x̃a−xb
|x̃a−xb| (. . . , x̃a, xb, xc, . . . )

x̃a−xc
|x̃a−xc|

φ′ψac

ιΛ ι

φ′ψab

ιΛ ι

φ′ψab φ′ψac

that induce a chain of equalities:

ι∗Λ(ψ
∗
abφ

′∗volS3 ∧ ψ∗
acφ

′∗volS3) = ι∗Λψ
∗
abφ

′∗volS3 ∧ ι∗Λψ∗
acφ

′∗volS3

= ψ∗
acφ

′∗volS3 ∧ ψ∗
abφ

′∗volS3

= −ψ∗
abφ

′∗volS3 ∧ ψ∗
acφ

′∗volS3

and ιΛ acts trivially on other edge forms. Thus ι∗Λω(ΓΛ) = −ω(ΓΛ). Moreover ιΛ
does not change the orientation since its is a combination of a shift by xb + xc and

29



xa 7−! −xa which is isotopic to identity on R4. We know that ω(ΓΛ) is integrable over
C

∗
Λ(R4) so we can remove codimension > 0 subsets C and ∂ and still have the same

value of the integral. We see that:∫
C∗

Λ(R4)∖C
ω(ΓΛ) =

∫
ιΛ(C∗

Λ(R4)∖C)
ω(ΓΛ) =

∫
C∗

Λ(R4)∖C
ι∗Λω(ΓΛ) =

∫
C∗

Λ(R4)∖C
−ω(ΓΛ)

where domains are of equal orientation. Thus∫
C∗

Λ(R4)∖C
ω(ΓΛ) = 0

Case (3): Call the univalent vertex of ΓΛ a, and its only neighbor b. The maps
φ′ψab and φ′ψαβ for α, β ∈ Λ and α ̸= a factor as follows:

C∗
Λ(R4) S3 C∗

Λ(R4) S3

C∗
Λ∖a(R4)× S3 C∗

Λ∖a(R4)× S3

φ′ψab

q

φ′ψα,β

qprojection φ′ψα,β

where

q(x1, . . . , x|Λ|) =

(
µx1, . . . µ̂xa, . . . , µx|Λ|,

xa − xb
|xa − xb|

)
and µ =

1√
1− |xa|2

Therefore the form ω(ΓΛ) on C∗
Λ(R4) is a pullback by q of a 3e′-form on C∗

Λ∖a(R4)×
S3 and

3e′ = dimC∗
Λ(R4) = 4(|Λ| − 1)− 1 > dimC∗

Λ∖a(R4)× S3 = 4(|Λ| − 1− 1)− 1 + 3

thus is 0. Note that |Λ| ≥ 3 is necessary for the inequality to make sense.
Case (4): We repeat the reasoning from the previous case, which is now easier as

we do not even need the S3 factor and ω(ΓΛ) is a pullback of a form on a space of 4
dimensions smaller. ⊠

Lemma 7.5. When |Λ| = 2 and ∞ ∈ Λ

πΛ∗ ω(Γ) = 0

Proof. Let Λ = {j,∞}. In that case the graph Γ/(N ∖ Λ) consists of two points j
and say i, and valence-of-j edges between them. ω(Γ/(N ∖ Λ)) is then (up to sign
depending on orientation of the edges) a wedge of pullbacks by the same map φ′ψji of
the same volume form on S3 so is 0. ⊠

Lemma 7.6. When |Λ| = 2, ∞ /∈ Λ (and vertices of Λ are connected by an edge), then

πΛ∗ ω(Γ) = (−1)label(Λ-edge)I(Γ/Λ)

Remark 7.7. Recall the formula

δ(Γ) =
∑

i : edges of Γ

(−1)label(i)−1Γ/i

and observe the difference in signs. This the reason for the chain map being up to sign.
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Proof of Lemma 7.6. Let λ := label(Λ-edge). By Proposition 7.2

ω(Γ) = (−1)λ−1p∗2ω(ΓΛ) ∧ p∗1ω(Γ/Λ)

We compute

πΛ∗ ω(Γ) = ±
∫
ECv,Λ(π)

p∗1ω(Γ/Λ)

∫
C

∗
2(R4)

p∗2ω(ΓΛ)

= ±
∫
ECv,Λ(π)

p∗1ω(Γ/Λ)

∫
C

∗
2(R4)

p∗2ψ
∗
Λφ

′∗volS3

= ±
∫
ECv,Λ(π)

p∗1ω(Γ/Λ)

∫
S3

volS3

= ±
∫
ECv,Λ(π)

p∗1ω(Γ/Λ)

= ±I(Γ/Λ)

Where the sign is determined by the orientation induced on SΛ from ECv(π) and the
sign coming from permutations in decomposition of ω(Γ). The sign from permutation
we already know: it is (−1)λ−1.

We only need to compute the induced orientation on the stratum SΛ. It was created
by the blowup along {xa = xb}, where Λ = {a, b}. Neighborhood of a generic point is
diffeomorphic to

(∂Bℓ(R4 × R4,∆))× (R4)v−2

≃ ∂Bℓ(R4, 0)× R4 × (R4)v−2

≃ S3 × R4 × (R4)v−2

The order of R4 factors does not matter as they are of even dimension. The induced
orientation on S3 is negative to the usual one (the one that paired with volS3 returns
1) since the outward normal vector to u ∈ ∂Bℓ(R4, 0) is −u. Hence the final sign is

(−1)λ

⊠

Proof of Theorem 6.1.
(1) dI(Γ) = (−1)k+l+1I(δΓ)

dI(Γ) = Cv(π)∗dω(Γ) + (−1)k+lCv(π)
∂
∗ω(Γ) by Stokes

= (−1)k+lCv(π)
∂
∗ω(Γ) ω(Γ) is closed

= (−1)k+l
∑

Λ⊂N∪∞
|Λ|≥2

πΛ∗ ω(Γ) by definition

= (−1)k+l
∑

Λ⊂N∪∞
|Λ|=2

πΛ∗ ω(Γ) by Lemma 7.4

= (−1)k+l
∑
Λ⊂N
|Λ|=2

πΛ∗ ω(Γ) by Lemma 7.5

= (−1)k+l+1 = I(δΓ) by Lemma 7.6
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(2) I∗ is independent of ω
Consider the bundle

Cv(I × π) : I × ECv(π) −! I ×B

The framing τE can be extended by the product structure. Consider two propagators
ω0 and ω1 on the ends: {0, 1} ×ECv(π). By Proposition 5.7 there exists a propagator
ω for τE extended on I × ECv(π) that extends both ω0 and ω1. Now consider sole B
as a base of the bundle

Cv(π)
I : I × ECv(π)

and integrate ω along the fiber. As in the proof of (1) we use the Stokes theorem:

dCv(π)
I
∗ω(Γ) = ±Cv(π)I∂

= ±
(
Cv(π)∗ω1(Γ)− Cv(π)∗ω0(Γ)± (I ×B −! B)∗Cv(π)

∂
∗ω(Γ)

)
The first ± comes from Stokes theorem, the second from orientation of the boundary
of I ×Cv(π), which will not be important. Pair the previous equation with a δ-cocycle
γ and use (1) on the third term:

dIω(γ) = ±
(
Iω1(γ)− Iω2(γ)±

∫
I
Iω(δγ)

)
= ±

(
Iω1(γ)− Iω2(γ)

)
Hence Iω1∗ and Iω0∗ differ up to sign by an exact form thus are equal in cohomology.
(3) I∗ is independent of the edge-orientations

Swapping the orientation of one edge gives a diffeomorphism: ς : EC2(π) −! EC2(π)
that swaps 1 and 2, thus a new propagator for this edge. This new propagator agrees
with the old one on the vertical boundary since

EC2(π) EC2(π)

S3 S3

ς

p(τ) p(τ)

ι

commutes by Proposition 5.1. Observe that the proofs of (1) and (2) work even if we
pick different propagators for each edge. That concludes the proof.
(4) I∗ is invariant with respect to homotopy of τE

Consider the homotopy between framings as a framing on I × EC2(π). We repeat
the proof of (2).
(5) I∗ is natural with respect to bundle maps

For a map B −! B′ we have the following commutative diagram:

ECv(π) ECv(π
′)

E E′

B B′

f̃

π π′

f
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which gives rise to:

PkH
l(G,Q)

H3e
dR(ECv(π)) H3e

dR(ECv(π
′))

Hk+l
dR (B) H3e−4v

dR (B′)

Cn(π)∗

f̃∗

Cn(π′)∗

f∗

The upper triangle may not commute, but f̃∗ω(Γ) is a wedge different propagators
hence its integral can be identified with the one of ω(Γ) by Theorem 6.1(2). ⊠

8. Results

Recall ’the (1, . . . , 1) class’

ζ̃k =
1

(2k)!(3k)!
([·]⊗ id)ζk ∈ PkH

0(G,Ak)

Effectively, we sum over all graphs that span Ak, which in our case is redundant as A2

is one-dimensional. By Theorem 6.1 it gives a cohomology class of B:

I∗(ζ̃k) ∈ Hk+l(B;Ak ⊗ R)

When dimB = k it can be paired with the fundamental class of B to obtain an element
of Ak ⊗ R.

If we specialize B = S2, k = 2 we obtain a linear map from the classifying of space
of framed (D4, ∂)-bundles

Z2 : π2BDiff(D4, ∂)⊗ R −! A2 ⊗ R

We in fact forget the framing in classifying space, due to discussion in Section 3. Recall

that A2 = Q
〈 〉

.

Theorem 8.1. The map Z2 is non-zero i.e., there exists a bundle π ∈ π2BDiff(D4; ∂)
such that

Z2(π ) =

hence dimπ2(BDiff(D4; ∂)⊗ R ≥ 1.

In [Wat19] and [Wat23] Watanabe describes a very concrete construction of the
bundle π . Unfortunately, it is beyond the scope of this text.

Corollary 8.2. Since πk BG ≃ πk−1G we see that

π1Diff(D4, ∂)⊗ R ≥ 1

Finally, recall the splitting:

Diff(Sn) ≃ Diff(Dn, ∂)×O(n+ 1)

we obtain the main result
dimπ1Diff(S4)⊗ R ≥ 1
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Remark 8.3. It is known that Top(Dn, ∂) (group of homeomorphisms that fix the
boundary pointwise) is contractible by the Alexander trick. Namely, for any f ∈
Top(Dn, ∂) we have an isotopy ft : f ∼ id, that gives rise to the deformation retraction:

H(t, f) = ft ∈ Top(Dn, ∂) ft(x) =

{
tf(x/t) for 0 ≤ ||x|| ≤ t

t for t ≤ ||x|| ≤ 1

Thus Watanabe’s bundle π is topologically trivial. Hence the name exotic.

A. Search for propagators for S2 × S2

A propagator for a 4-manifold M is a 3-cochain in

H3(C2(M, ∗), ∂) ≃ H3(M̊ × M̊ ∖∆, ∂)

that can be expressed as a pullback of the volume form by the Gauss map. However
we may forget the second condition for a while and think of candidate-propagators.
Let M = S2 × S2. We heavily employ the Cn(−) −! Cn(−) homotopy equivalence,
throughout this section and the whole Appendix.

Proposition A.1. The manifold M̊ is parallelizable.

Proof. M̊ is homotopy equivalent to S2 × S2. The tangent bundle TM̊ restricts under
this homotopy equivalence to as sum R2 ⊕ TS2, where R2 is the trivial bundle, over
each S2. By the classification of bundles over the sphere

[♠♠
♠♠

]
this bundle is trivial. ⊠

Corollary A.2. ν∆ is a trivial bundle.

Proof. It is a fiberwise restriction R4 −! D4 of the normal bundle to the diagonal
which isomorphic to the tangent bundle. ⊠

A.1. Mayer–Vietoris

In this subsection all cohomologies are over Z.
Consider the decoposition

M̊ × M̊ = (M̊ × M̊ ∖∆) ∪ ν∆
(M̊ × M̊ ∖∆) ∩ ν∆ ≃ M̊ × S3

and its induced Mayer–Vietoris sequence:

. . . −! H i(M̊×M̊) −! H i(ν∆)×H i(M̊×M̊∖∆) −! H i(ν∆∩(M̊×M̊∖∆)) −! . . .

Since ν∆ is trivial:

ν∆ ≃ M̊ ×D4

ν∆ ∩ (M̊ × M̊ ∖∆) ≃M × S3

By the homotopy equivalence we compute cohomologies of M :

S2 ∨ S2 ↪−! S2 × S2 ∖ ∗[♠♠
♠♠

]
See for example [Hir].
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H i(M̊) = H i(S2 ∨ S2) = Z, 0, Z2, 0 . . .

By the Künneth formula:

H i(M̊ × M̊) = Z, 0, Z4, 0, Z4, 0 . . .

H i(M̊ × S3) = Z, 0, Z2, Z, 0, Z2 . . .

The Mayer–Vietoris sequence yields then:

H i(M̊ × M̊) H i(∆×D4)×H i(M̊ × M̊ ∖∆) H i(∆× S3)

0 Z Z× Z Z

1 0 0× __ 0

2 Z4 Z2 × __ Z2

3 0 0× __ Z

4 Z4 0× __ 0

5 0 0× __ Z2 0

We see immediately see that

H1(C2(M, ∗)) = 0

H2(C2(M, ∗)) = Z4

H5(C2(M, ∗)) = Z2

Then for other groups there are two options:{
H3(C2(M, ∗)) = 0

H4(C2(M, ∗)) = Z3
or

{
H3(C2(M, ∗)) = Z
H4(C2(M, ∗)) = Z4

So we need to understand the map

δ∗ : H3(∆× S3) −! H4(M ×M)

It could be done by embedding M̊×M̊ in R12 and performing calculations on differential
forms – everything is given by a formula. The disadvantage is lengthy computations,
the advantage would be having a concrete concrete candidate for the propagator. This
work is in preparation.
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A.2. Leray–Serre spectral sequence

We try to use some more advanced machinery to compute H3(C2(M, ∗),Q). In this
subsection all cohomologies are over Q. This is no loss of generality since we are inter-
ested in representing propagators as differential forms – classes of de Rham cohomology.

Theorem A.3 (Leray-Serre spectral sequence, cf. [Hatb]). For a fibration F −! E −! B
of path connected spaces, with B simply connected there is a first quadrant spectral
sequence of algebras with

Ep,q2 = Hp(B;Hq(F )) = Hp(B)⊗Hq(F )

converging to Hp+q(E) i.e.

Hn(E) =
⊕
p+q=n

Ep,q∞

In our situation, C2(M, ∗) can be viewed as a bundle over M̊ with fiber M̊ ∖ ∗ i.e.:

M̊ ∖ ∗ −! C2(M, ∗) −! M̊

Observe that M̊ ∖ ∗ ≃hty S
2 ∨ S2 ∨ S3 hence

H i(B) = Q, 0, Q2, 0 . . .

H i(F ) = Q, 0, Q2, Q, 0 . . .

The E2-page look as follows:

Ep,q2 =

3 Q 0 Q2 0

2 Q2 0 Q4 0

1 0 0 0 0

0 Q 0 Q2 0

p
q 0 1 2 3

so we need tu understand the same map Q = E3,0
2 −! E2,2

2 = Q4, but over Q, which
is not better in any way.

A.3. Homological computation

We can also perform geometric reasoning on homology classes and then translate the
result to cohomology by the universal coefficients formula. All homologies are over Q.
Again, this yields no loss of generality since we are interested in de Rham cohomology.

Corollary A.4 (to the Universal Coefficient Theorem, see [Hat01]). For any topolog-
ical space X with finitely generated homology groups over Q the following holds:

Hn(X;Q) ≃ Hn(X;Q)
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The Mayer–Vietoris sequence looks the same, just with reversed arrows.

Hi(∆× S3) Hi(∆×D4)⊕Hi(M̊ × M̊ ∖∆) Hi(M̊ × M̊)

5 Q2 0⊕ __ 0

4 0 0⊕ __ Q4

3 Q 0⊕ __ 0

2 Q2 Q2 ⊕ __ Q4

1 0 0⊕ __ 0

0 Q Q⊕Q Q 0

We are interested in the map

∂ : Q4 ≃ H4(M̊ × M̊) −! H3(∆× S3) ≃ Q

We use the description provided in [Hat01, Section 2.2] to compute its image. Since
M̊ ≃hty S

2 ∨ S2, each class of H4(M̊ × M̊) is represented by a product of 2-spheres.
We denote these spheres by S1, S2, S′

1, S′
2, where S1 and S2 are classes in the first copy

of M̊ in M̊ × M̊ , while S′
1 and S′

2 of the second one. Then

H4(M̊ × M̊) = Q
〈
[S1 × S′

1], [S1 × S′
2], [S2 × S′

1], [S2 × S′
2]
〉

Let us examine the image of the first class: [S1 × S′
1]. We first need to express it as

sum of two chains, with boundary in ν∆. Let

∆1 := {(x, x) ⊂ S1 × S′
1}

ν1∆1 := {tubular neighbourhood of ∆1 in S1 × S′
1} ≃ ∆1 ×D2

then
[S1 × S′

1] = [ν1∆1] + [S1 × S′
1 ∖ ν1∆1]

The boundary of ν1∆1 is null-homologous in S3 × ∆ since it does not contain the
normal-to-∆ 3-sphere.

Let us look at [S1 × S′
2] then. Its intersection with ∆ is only one point – the

"wedging point" of M ≃ S2 ∨ S2, let us call it α. In C2(M, ∗) = M̊ × M̊ ∖∆, α is cut
out hence we will actually looking at its neighbourhood in [S1 × S′

2], call it D(α) since
it is a 4-disk when completed with α. We see that

[S1 × S′
2] = [D(α)] + [S1 × S′

2 ∖D(α)]

Since D(α) intersects ∆ in one point only it can be homotoped to be normal to it.
Thus δ[D(α)] is the generator of H3(∆× S3) and hence

∂ : Q4 ≃ H4(M̊ × M̊) −! H3(∆× S3) ≃ Q
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is onto. Therefore by exactness

H3(C2(M, ∗)) = 0

making no room for candidate-propagators.

B. Search for propagators for CP2

B.1. Normal to the diagonal

To apply the Mayer–Vietoris sequence we need to prove that ∂ν∆ in C̊P2 × C̊P2 is
trivial. We show that it is homologically trivial.

Observe that C̊P2 is homotopy equivalent to S2 hence ∂ν∆ is homotopy equivalent
to an S3 bundle over S2 that embeds into a 4-dimensional real vector bundle. We call
the total space of this bundle X. X is a union of two copies of D2×S3 glued over ∂D2

by a clutching function, see [Hir] for reference.
We write down the Mayer–Vietoris sequence for that decomposition:

X = (D2 × S3) ∪ (D2 × S3)

(D2 × S3) ∩ (D2 × S3) = S1 × S3

The homologies are over Z.

Hi(S
1 × S3) Hi(S

3)⊕Hi(S
3) Hi(X)

5 0 0 __

4 Z 0 __

3 Z Z2 __

2 0 0 __

1 Z 0 __

0 Z Z2 Z 0

We immediately see that:

H5(X) ≃ Z
H2(X) ≃ 0

If H1(X) was non-zero, that is Z, then H0(S
1 × S3) −! H0(S

3)⊕H0(S
3) would be 0

hence the next arrow would be an isomorphism between Z2 and Z which is impossible.
We look at the third row:

H3(S
1 × S3) −! H3(S

3)⊕H3(S
3) −! H3(X)

(1) 7−! (1, 1) 7−! (1− 1) = (0)
(a, b) 7−! (a− b)
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Thus by exactness H3(X) ≃ Z and, by exactness again, H4(X) ≃ 0. Putting this all
together we obtain:

Hi(X) ≃ Z, 0, Z, Z, 0, Z, 0, . . .

while
Hi(S

2 × S3) ≃ Z, 0, Z, Z, 0, Z, 0, . . .

is the same.

B.2. Finding the propagator by Mayer–Vietoris

We repeat the homological reasoning from Section A.3. In this subsection the coeffi-
cients are over Q.

C̊P2 × C̊P2 ≃ C2(CP2, ∗) ∪ ν∆
C2(CP2, ∗) ∩ ν∆ ≃ ∂ν∆

Hi(C̊P2) ≃ Q, 0, Q, 0, . . .

Hi(C̊P2 × C̊P2) ≃ Q, 0, Q2, 0, Q, 0, . . .
Hi(∆× S3) ≃ Q, 0, Q, Q, 0, Q, 0, . . .

Hi(∂ν∆) Hi(∆)⊕Hi(C2(CP2, ∗)) Hi(C̊P2 × C̊P2)

5 Q 0⊕ __ 0

4 0 0⊕ __ Q

3 Q 0⊕ __ 0

2 Q Q⊕ __ Q2

1 0 0⊕ __ 0

0 Q Q2 Q 0

Immediately,

H5(C2(C̊P2)) ≃ Q

H1(C2(C̊P2)) ≃ 0

Again, the crucial arrow is

∂ : Q ≃ H4(C̊P2 × C̊P2) −! H3(∂ν∆) ≃ Q
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The only generator of H4(C̊P2 × C̊P2) is the class [S2 × S2]. This is a diagonal class,
like [S1 × S′

1] previously. We need to compute ∂ν1∆1 – the boundary of the thickened
diagonal in S2 × S2. The Euler class of ν1∆1 is, by the isomorphism to the tangent
bundle, equal to χ(S2) = 2. By the classification of bundles over S2 ∂ν1∆1 is the Hopf
bundle

S1 ↪−! S3 −! S2

hence represents a non-zero class in H3(∂ν∆). Thus, again, we have found no room for
a candidate-propagator.

C. Propagators for (S1)4

The computation of Section A.1 produces results when π1X̊ is nontrivial. We compute
H3C2((S

1)4; ∗) with the Mayer–Vietoris sequence.

˚(S1)4 × ˚(S1)4 = ν∆ ∪ C2( ˚(S1)4)

= ν∆ ∩ C2
˚(S1)4 = ∆× S3

Relevant cohomologies of these spaces are as follows.

H∗( ˚(S1)4) ≃ H∗((S1 × S1) ∨ (S1 × S1)) ≃ Z, Z4, Z2, 0, . . .

H3( ˚(S1)4 × ˚(S1)4) ≃ (Z4 ⊗ Z2)⊕ (Z2 ⊗ Z4) ≃ Z16

H3(ν∆) ≃ H3(∆) ≃ 0

H4(∆× S3) ≃ Z4 ⊗ Z ≃ Z4

As in the previous cases we are interested in the following part of the exact sequence:

H4(∆× S3) −! H3( ˚(S1)4 × ˚(S1)4) −! H3(ν∆)⊕H3C2( ˚(S1)4)

which is
Z4 −! Z16 −! 0⊕H3C2( ˚(S1)4)︸ ︷︷ ︸

⩾Z12

Thus, there is plenty of candidate-propagators in this case.

D. General candidate-propagators

We generalize previous computations to every almost-parallelizable closed 4-manifold
X, with H3(X̊) = 0. Almost-parallelizability is necessary for triviality of the normal
bundle to the diagonal. The part of the Mayer–Vietoris exact sequence we are interested
in is

H4(X̊ × X̊)
∂
−! H3(∆× S3) −! H3(∆×D4)⊕H3C2(X, ∗)

Triviality of H3(X̊) guarantees that

H3(∆× S3) = Z⟨[∗]⊗ [S3]⟩ ≃ Z
H3(∆×D4) ≃ 0
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Thus we need to know if ∂ is onto. We already know that the diagonal classes are in
ker ∂ and non-diagonal classes are not. Therefore the map ∂ is not onto, and we have
room for propagators, if {

dimQH
2(X̊,Q) ≤ 1

dimQH
3(X̊,Q) = 0

Poincaré–Lefschetz duality translates this conditions into Betti numbers:{
H2(X̊,Q) ≃ H2(X̊, ∂,Q) ≃ H2(X,Q)

H3(X̊,Q) ≃ H1(X̊, ∂,Q) ≃ H1(X,Q)

So we need b1(X) = 0 and b2(X) ≤ 1 for the existence of candidate-propagators.
Moreover in Section B we show an example where b1 = b2 = 0 does not imply the
existence of propagators.

Our result is slightly weaker from a criterion of Lin and Xie [LX23, Remark 1.1.14],
who claim b1(X) = 0, b2(X) ̸= 0 provides an obstruction to the existence of the propa-
gator, without any parallelizability assumptions. To construct an actual propagator we
would need to express it as a pullback of the Gauss map on the boundary and extend
it to the whole space as in Section 5. We have not investigated this problem so far.
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